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Preface

Rapid advances in VLSI technology have enabled fabrication of billions of tran-
sistors on a single chip. Technology scaling has allowed more than one processor
core to be integrated in a single chip. The current computing systems, including
desktops, laptops, and mobile phones have many-core processor chips. Software
applications are parallelized to execute on multiple processing units/cores concur-
rently to reduce the overall execution time. Although sophisticated compute sys-
tems have been developed for fast execution, software applications belonging to
certain domains take a very long time (days to months) for producing results.

Bioinformatics is one such domain in which applications take a long time to
execute. It is also a multidisciplinary research field consisting of computer science,
mathematics, and statistics, which deals with storing, analyzing, and interpreting
large biological data. The recent advancements in biological research has resulted in
generation of large amounts of digital data. Most of the bioinformatics algorithms
are both data intensive and compute intensive. Speedups can be obtained using
specialized hardware along with the existing processor architectures.

General-purpose processors are often augmented with hardware accelerators for
compute intensive application to reduce the computation time. Typical hardware
accelerators consist of a large number of small execution units which facilitate
parallel execution. Very often they represent transformation of loops in a sequential
code (temporal iteration) to spatial unrolling of the loop (spatial iteration) to reduce
the computation time through concurrent execution. Some of the popular hardware
accelerators are GPUs, FPGAs, and CELL processors. The accelerators are pro-
grammable and hence can be used for a variety of related applications. FPGA-based
accelerators are known to be effective in speeding up certain kinds of applications
when compared to other accelerators. Since FPGAs are configurable, they can be
customized to implement a variety of processing elements as accelerators. But
speedup may not always be possible as FPGAs run at slower clock frequency
vis-a-vis processors and the resources available in the FPGA might not be sufficient
for the implementation of a significant number of copies of the processing elements.
FPGAs with heterogeneous mix of coarse grained hard blocks along with
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programmable soft logic, can facilitate implementation of a much larger number of
processing elements and thus achieve higher speedups.

FPGAs have evolved and the hardware blocks useful for many applications are
being implemented within the FPGA fabric as Hard Embedded Blocks (HEBs).
Introduction of HEBs in FPGA can significantly increase the performance of
FPGA-based accelerators. Modern FPGAs contain specialized embedded units like
memory units, array multipliers, DSP computation units, etc. In fact many FPGAs
have embedded processor cores. Based on the application a matching FPGA with
the right HEBs is chosen. For example in Xilinx Virtex-4 FPGAs, the SX-series has
only LUTs, in the LX-series there are DSP units as HEBs and the FX-series have
Power-PC embedded in them. The user can choose the best suited FPGA archi-
tecture according to his/her needs. It is easy to predict that many more such hard
blocks will be embedded into future FPGAs.

The evaluation approach to identify and incorporate HEBs is complex as there
are many parameters and constraints such as area, granularity routing resources,
etc., which need to be considered in an integrated manner to get efficient imple-
mentation. Incorporating HEBs in FPGA involves a clear tradeoff as this may
occupy a significant area and hence may reduce the configurable logic. Further, they
may not be usable for many applications. On the other hand, they may give very
significant speedups for certain applications. Clearly, the challenge is to identify
kernels that are useful for a class of applications and justify designing customized
HEBs that are effective in significantly speeding up an important class of appli-
cations. There is a need to develop a methodology to explore the FPGA fabric
design space to evaluate the nature and number of HEBs based on other constraints.

This book presents an evaluation methodology to design future FPGA fabrics
incorporating hard embedded blocks to accelerate applications. This methodology
is useful for selection of blocks to be embedded into the fabric and for evaluating
the performance gain that can be achieved by such an embedding. The use of the
methodology is illustrated by designing FPGA-based acceleration of two important
bioinformatics applications: Protein docking and Genome assembly. This book
explains how the respective HEBs are designed and how hardware implementation
of the application is done using these HEBs. The impact of use of HEBs on
accelerating these two applications is shown. The methodology presented in this
book may also be used for designing HEBs for accelerating software implemen-
tations in other domains as well.

We thank Prof. Dominique Lavenier for letting us collaborate with the
SYMBIOSE lab, IRISA, Rennes, France. We are also grateful to him for providing
us guidance on this project. We thank Pierre Peterlongo for his valuable inputs on
Mapsembler.

Hong Kong B. Sharat Chandra Varma
New Delhi, India Kolin Paul
New Delhi, India M. Balakrishnan
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Chapter 1
Introduction

Abstract Application-specific integrated circuits (ASICs) are specialized custom-
designed circuits which are developed to carry out desired tasks efficiently in
hardware. Often, microprocessors are preferred over ASICs, since they give flexibil-
ity to users. They allow the same hardware to be used for a variety of applications.
Still for applications requiring very high speed computation and/or very low energy
ASICs have been preferred over software solutions. Microprocessors are typically
based on Von Neumann architecture, which allow execution of stored programs (Von
Neumann, IEEE Ann. Hist. Comput. 15(4): 27–75, 1993). For implementing a spe-
cific application, the user writes software programs to specify the sequence of tasks
that gets executed within the processor. Rapid advances in VLSI technology have
enabled fabrication of billions of transistors on a single chip. Technology scaling has
allowed number of transistors to double every 18months in accordance to Moore’s
law (Moore, Prod. IEEE 86(1):82–85, 1998). This technological advancement has
led to design and development of faster and energy-efficient hardware. Availability of
faster processors enabled software based solutions to replace hardware solutions over
increasingly larger domain. In the past few years, frequency scaling of processors
has saturated due to thermal limitations and the integrated circuit (IC) designers are
focusing on gaining speedups by running more operations concurrently in hardware;
either on multi-core processors or on specialized hardware.

1.1 Background

The current computing systems including desktops, laptops, and mobile phones have
many-core processor chips. In synergy with this approach, general purpose proces-
sors are often augmented with hardware accelerators for compute intensive applica-
tions to reduce the computation time. Typical hardware accelerators consist of a large
number of small execution units which facilitate parallel execution. Very often they
represent transformation of loops in a sequential code (temporal iteration) to spatial
unrolling of the loop (spatial iteration) to reduce the computation time through con-
current execution. Some of the popular hardware accelerator architectures are based
on GPUs and CELL processors. FPGAs with hardware reconfigurability is another

© Springer Science+Business Media Singapore 2016
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for BioInformatics Applications, Springer Series in Advanced
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2 1 Introduction

Fig. 1.1 Performance versus
flexibility of compute
systems

interesting option for building hardware accelerators. FPGA-based accelerators are
programmable and hence can be used for a variety of related applications. Although
sophisticated compute systems have been developed for fast execution, software
applications belonging to certain domains still take very long time (days to months)
for producing results. Moore’s law has driven semiconductor industry to implement
very efficient larger circuits on a single chip [1]. This has enabled design of better
compute systems than the traditional Von Neumann based systems [2].

Software solutions are parallelized to execute on multiple processing units/cores
concurrently to reduce the overall execution time. The performance versus flexibil-
ity/programmability of various compute systems is shown in Fig. 1.1. The ASICs
have the least flexibility, but give the best performance both in terms of time and
energy. The hardware accelerators come below ASICs in terms of performance.
They are all programmable and hence can be used for various applications, but yet
require “accelerator-specific coding” to reap the full benefits of the underlying hard-
ware architecture. For example, the NVidia GPUs require CUDA implementation,
and CELL processors require special multithreaded code to run on them whereas
HDL coding has to be done to implement the hardware. Researchers are working
towards a unified language like OpenCL which allows easy programmability as well
as portability between different architectures [3]. The microprocessors are easy to
program, and hence are more popular. Depending on the application characteristics,
specific accelerators may outperform other accelerators. Selecting a suitable accel-
erator and doing an efficient implementation/programming is an important design
decision when performance as a key objective. For floating point applications, GPUs
or CELLmay be preferred and for custom accelerator designs, FPGAs are preferable.

FPGA based accelerators are known to be effective in speeding up certain kind
of applications when compared to other accelerators [4, 5]. Since FPGAs are recon-
figurable, they can be customized to implement a variety of processing elements as
accelerators. Systolic array based hardware implementations are naturally suitable
for mapping onto FPGAs because of simple cell structures and local communication.
Further its high degree of parallelism coupled with pipelined implementation with
local communication mapped onto short interconnects can give very high speedups
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over software solutions. Custom hardware design and deep-pipelines, when imple-
mented in FPGAs also provide performance benefits. But speedup always may not
be possible as FPGAs run at slower clock frequency vis-a-vis processors and the
resources available in the FPGA may not be sufficient for the implementation of a
significant number of instantiation of the processing elements to exploit the available
degree of parallelism. Recent FPGAs contain a heterogeneous mix of coarse grained
hard blocks along with programmable soft logic, facilitating implementation of a
much larger number of processing elements. This can translate into much higher
speedups as well.

FPGAs have evolved and the hardware blocks useful for many applications are
being implemented within the FPGA fabric as hard embedded blocks (HEBs). Intro-
duction ofHEBs in FPGA can significantly increase the performance of FPGA-based
accelerators. Modern FPGAs contain specialized embedded units like memory units,
array multipliers, DSP computation units, etc. In fact many FPGAs have embedded
processor cores. Based on the application requirements, a matching FPGA with the
right HEBs is chosen. For example in Xilinx Virtex-4 FPGAs, the SX-series has only
LUTs, in the LX-series there are DSP units as HEBs and the FX-series have Power-
PC embedded in them [6]. The user can choose the best suited FPGA architecture
according to his/her needs. It is easy to predict that many more such hard blocks will
be embedded into future FPGAs [7, 8].

FPGA-based accelerators have been successful in speeding up bioinformatics
applications which take a long time to execute [9, 10]. Bioinformatics is a multidis-
ciplinary research field consisting of computer science, mathematics, and statistics
which deals with storing, analyzing and interpreting large biological data. The recent
advancement in biological research has resulted in the generation of large amounts
of digital data. Most of the bioinformatics algorithms are both data intensive as well
as compute intensive. Two important bioinformatics applications of our interest are
protein docking and genome assembly.

1.1.1 Protein Docking

Study of 3D structure of both ligand and protein together helps in drug design. Mole-
cular docking is a process bywhich twomolecules fit together in a 3D space. Docking
tries to predict the structure of the complex formed from these two molecules. This
process takes a very long time to be done chemically and hence computer software
simulations are used. The protein docking program ranks the protein–ligand complex
based on scoring functions. Scoring functions predict the strength of the complex.
The high scoring drug molecules from a large library of drug molecules are then
selected as probable drug molecules. A library may consist of more than one million
drug molecules [11].

FTDock is an open-source protein docking software application, which is used to
study protein–protein binding as well as protein–ligand binding [12]. A correlation
function is used to do the scoring. The correlation function is expensive to compute



4 1 Introduction

in software and hence fast Fourier transform (FFT) is used to reduce the number
of multiplications. Even though the application uses FFTW library, which is an
efficient implementation of FFT, it takes large amount of time to execute [13]. For
example docking of two proteins, barnase (1a2p)1 and barstar (1a19) using FTDock
application took 21h to execute on a desktop PC with Intel Core 2 duo E4700,
2.6GHz processor with 4GB RAM.

1.1.2 Genome Assembly

Genome is the set of all genes in an organism. The study of genome enables us to
understand the various functions in an organism. It also helps identifying defects and
diseases caused due to small changes in the genes known as mutation. The genome
is represented by a long stream of alphabets, “A”, “C”, “T” and “G”. These alphabets
represent deoxyribonucleic acids (DNA), which encode the genes.

Sequencing technologies are used to determine the order of nucleobases in the
DNA. Primitive sequencing methods were very slow and were very expensive. Next-
generation sequencing (NGS) technologies produce large amounts of data at very
low cost [14]. The NGSmachines take a biologically processed sample and generate
large number of sequences of fixed length up to 450 known as “reads”. These reads
are a part of the original long genome. The computation challenge is to construct the
original genome from the reads produced by the NGS machine. In de novo genome
assembly, the genome is constructed using the overlap information available in the
reads. Like most other bioinformatics applications, genome assembly is also data
dominated. For example, the size of uncompressed human genome of length three
billion base pairs is 3GB and is 750MBwhen compressed. The reads contain overlap
information and hence the size of input file given to assembly softwares for assem-
bling human genome is often more than 30GB. Even though compute infrastructure
ranging from server racks to cloud farms exist for solving these problems, the time
taken is enormous. For example assembly of human genome using PASHA software
took around 21h on a 8-core workstation with 72GB memory [15].

Clearly, there is a need to accelerate these applications, as they take significant
amount of time to execute. Software applications can be accelerated using hardware
accelerators based on existing FPGAs. Further speedups may be obtained by using
new reconfigurable fabrics with custom-designed HEBs. The methodology to iden-
tify and evaluate appropriate HEBs to be incorporated is complex as there are many
parameters and constraints like area, granularity, routing resources, etc. that need to
be considered in an integrated manner to get an efficient implementation. Design
space exploration (DSE) of such future fabrics is critical to the design of these HEBs
and in turn design of FPGA-based accelerators.

1The protein structures are denoted by their four letter code in the Protein Data Bank.
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1.2 DSE of Application Acceleration Using FPGAs
with Hard Embedded Blocks

The design of new hardware for performing a set of tasks involves area, delay and
power trade-offs. Considering application acceleration as the main goal, many more
design choices are added into this pool. The design choices should have a balance
between the various factors and a trade-off consensus is required to identify the best
suited design for a particular domain or set of applications. Figure1.2 shows the flow
diagram for carrying outDSE for carrying out application acceleration.A typical flow
used for accelerating application using FPGAs is shown on the left and the design
of HEBs is shown on the right. The goal of the DSE is to design new reconfigurable
fabrics incorporating HEBs to achieve better performance over existing FPGAs.

Fig. 1.2 DSE of FPGA-based accelerators
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Initially, accelerator-specific changes are done to the chosen algorithm. The kernels
are identified and implemented in hardware using HDLs. The application is modified
to interface with these kernels. This defines the data transfers between the software
and the hardware platform. Actual speedups can be measured on existing platforms
(boards/cards having existing FPGAs).

Performance estimation is often needed to predict the performance on platforms
that are yet to be designed.Using these estimates, probableHEBs have to be identified
and evaluated. ASIC synthesis of these HEBs has to be carried out to estimate the
area occupied and to predict the operating frequency. For some of the applications,
estimating speedups is straight forward and hence analytical models can be used,
whereas for others it is difficult to build analytical models and hence simulation
models have to be used tomimic hardware behavior. System-level simulationmodels
are used to estimate the speedups using fabrics incorporatingHEBs. These simulation
models can be built at various levels of abstraction to carry out DSE.

1.2.1 Challenges in Design Space Exploration

The key issues to be addressed for DSE of FPGAs with HEBs are:

1. Application modification to suit accelerator architecture
2. HEBs identification
3. FPGA design incorporating these HEBs
4. Application mapping on hardware
5. Performance estimation

Applications are usually designed to perform efficiently on a generic system.
When accelerators are used, accelerator-specific modifications help in getting per-
formance benefits. For example, in FPGAs, data types and bit width chosen can
have significant impact on the performance. Fixed point computation units occupy
significantly less resources than floating point units and hence number of concurrent
executions can be increased using the same hardware resources resulting in increased
performance. Based on the memory available in the accelerator architecture, mod-
ifications that trade-off “local” memory with “remote” memory can be carried out
on the application to get better speedups. Applications can also be modified to take
advantage of theHEBs, as they use less amount of silicon area and run at significantly
higher clock rates when compared to implementations based only on configurable
logic, i.e., CLBs/LUTs in case of Xilinx FPGAs.

Another important factor influencing performance is the accelerator architecture
design. Incorporating HEBs in FPGA involves a clear trade-off as this may occupy
significant area and hence reduce space available for configurable logic. Further, they
may not be usable for many applications. On the other hand, they may give very sig-
nificant speedups for specific applications. Clearly the challenge is to identify kernels
that are useful for a class of applications and justify designing customized HEBs that
are effective in significantly speeding up this class of applications. The right choice
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of the number of units and the type of units will not only be able to give performance
benefits but also cost benefits. The various factors affecting this choice are the appli-
cation/s computation requirements, internal memory requirements, external memory
bandwidth and the application’s post-processing requirements. Efficient mapping of
the application also helps in arriving at suitable values for some of these parameters.

Applicationmapping on hardware is a typical hardware–software co-design prob-
lem, where the user with the aid of tools decides the portions of the application to
be run in software and the portions that should be run in hardware to get maximum
speedups under resource constraints. The kernels that takemost of the execution time
in software have to be identified by profiling the application.Memory profiling has to
be done to estimate the communication delay between host and the FPGA. Memory
profiling also helps in deciding the use of internal memories (BRAMs) available in
the FPGA that effectively creates a memory hierarchy. Wherever possible, multiple
copies of the kernels have to be executed in parallel in order to get speedups. It is in
this context that HEBs have to be efficiently used in the mapping process to achieve
speedups. The kernels which share data have to be placed close to each other to avoid
communication delays. Mapping efficiency can be assessed by using performance
estimation.

Performance estimation is critical as HEBs are typically an expensive solution.
It is well known that hardware–software partitioning can be efficiently explored
using performance estimation. Performance estimation can be carried out by building
simulation models at various levels of abstraction. Typically, the models at higher
level of abstraction take considerably less amount of time than the ones at lower
levels and thus can be used to explore most of the design space. On the other hand,
the lower level models give more accurate performance numbers when compared to
higher level models. The right choice of parameters to be studied at different levels
of abstraction based on accuracy and simulation time will have significant impact
on design turn-around. In the context of HEBs, performance estimates help in the
modification of application, identification and design of HEBs, as well as mapping
applications onto FPGAs incorporating HEBs.

Use of HEBs can increase the operating frequency of the hardware implemen-
tation. Custom HEBs do a dedicated operation, but occupy less silicon chip area
compared to CLB/LUT implementation and hence the FPGA resources can be used
optimally for the rest of the operations. Typically, the coarser HEBs are IP cores
with less programmability like the PCI interface logic, which are common to a wide
range of applications. The finer grained HEBs like BRAMs provide more flexibility,
so that they can be used as small modules as well as built into large modules to meet
the design requirements. A right combination of the HEBs along with the LUTs
and switches can provide performance benefits without losing the programmability
(flexibility) of FPGAs. Keeping all these key factors into consideration, there is a
need to develop a methodology to explore the FPGA fabric design space to evaluate
nature and number of HEBs based on other constraints.
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In rest of the chapters we consider application and accelerator architecture in
tandem and show a methodology to evaluate accelerators using FPGAs with custom
HEBs. We use bioinformatics as the application domain, since the domain consists
of applications having very high computational requirements.
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Chapter 2
Related Work

Abstract In this chapter we discuss the related work, where we present some of the
ideas and implementations reported by other researchers working in areas closely
related to this field. First we describe the various accelerator architectures and then,
discuss FPGA based accelerators. We describe the FPGA architecture as well as the
EDA tool flow followed while exploring HEBs in FPGAs. We discuss “bioinformat-
ics” domain and the two important applications belonging to this domain. We show
how these applications have benefited by FPGA-based acceleration.

2.1 Accelerator Architectures

Accelerators have become very popular in the community in the past decade. Popular
implementations are based on ASICs, FPGAs, GPUs, and CELL add-ons. Hetero-
geneous accelerators consist of a mix of accelerators which are connected to the
control processor. Each of the approaches listed here have their own strengths and
weaknesses.

Chung et al. [22] study the importance of heterogeneous architectures. They eval-
uate different architectures by running various benchmarks and predict the perfor-
mance of future architectures using scaling factors [43]. They predict that the future
systems will include a mix of various architectural features in order to have a balance
between power and speed. Venkatesh et al. [85] predict that the future chips will have
large amounts of “Dark Silicon”. As the operating frequency of IC is increased, the
chip gets heated up and some parts of the IC have to be shut down to avoid perma-
nent damage. The parts which are shut-down are known as dark silicon. The authors
propose reconfigurable “conservation cores” that operate at lower frequencies dur-
ing the shut-down of the faster cores. Even though these conservation cores have
less operating frequency, they carry out specialized computations parallel and thus
provide performance benefits over chips that do not have them.

In ASICs, hardware implementation of multiple copies of the compute intensive
kernels is done. ASIC implementation of the kernels will give higher performance
compared with other accelerators in terms of power, speed, and area. Kuon et al. [50]
have studied the gap between designs implemented in FPGA and ASIC. For 90nm
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technology, they report that the FPGA implementations are 5× slower and occupy
35× more area compared to ASIC implementations. They also report that dynamic
power of FPGA implementations is 14 times that of ASIC. They also report that by
using theHEBs in FPGAs, these ratios can be decreased. Even thoughASICs provide
high performance they are not popular as accelerators becauseASIC implementations
have long “design time” and do not offer much flexibility once the implementation
is done. One more disadvantage of ASICs as accelerator is that the cost of producing
them at low volumes is very high. As flexibility offered by ASICs is low, the demand
for such specific accelerator chips is low but also their “life” is also low due to
changes in standards as well as applications. FPGAs are cheaper compared to ASICs
as they offer a lot of flexibility due to their reprogrammability. The hardware can
be reconfigured for different kernel implementations. These advantages make FPGA
one of the most popularly used accelerators.

Recently GPUs and CELL as accelerators are being extensively used as acceler-
ators. These accelerators have a large number of floating point arithmetic units as
cores which take advantage of single instruction multiple data (SIMD) processing.
Many researchers have compared various accelerator architectures [16, 32, 35, 46].
Most of them report that GPUs and CELL are useful for floating point computations
and FPGAs perform well on fixed point or integer computations. Further, FPGAs
outperform other accelerators in some domains including cryptography.

2.1.1 Challenges in Designing Accelerators

The accelerators differ mainly on parameters such as price, power, productivity,
performance, and ease of programming. Flexibility is an important aspect while
deploying accelerators. FPGAs give more “configuration” flexibility vis-a-vis GPUs
and CELL, but run at relatively lower clock speeds. The power consumption of GPUs
is relatively high and can pose problem in cluster deployment.

Sanjay et al. [70] discuss the various issues related to the design of accelerators.
They report that the main concern with accelerators is the lack of standard models
in both architecture and software programming. This creates portability, scalability,
and software management issues. A common programming language which allows
ease of programming and standard interface design between host and accelerator to
allow ease of data transfers across memory hierarchies can solve these problems.

The major obstacle for wider use of accelerators is that they require extra pro-
gramming effort, which leads to long learning curves and hence result in increase in
design time as well as cost. As the hardware of GPUs, CELL, and multicore CPUs
are fixed and not designed from the perspective of bioinformatics applications, the
software needs to be “tailored” and “partitioned” to utilize the resources efficiently
for getting high performance. Each of the accelerators provides different program-
ming interfaces and extensions. For designing an accelerator using FPGAs, we have
to do a custom design of hardware.
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2.2 FPGA-Based Acceleration

FPGAs are integrated circuits consisting of an array of logic blocks interconnected
by routing resources which are programmable. Depending on their architecture they
can be programmed either once or many times. The popular FPGA players presently
in themarket areXilinx andAltera, which are based on SRAMs and thus easily repro-
grammable [4, 92]. The other kind of FPGAs are based on anti-fuse, EPROM based
[72]. Many other architectures based on emerging technologies have been proposed
bymany research groups [27, 83, 95]. TheSRAM-basedFPGAs are reprogrammable
and hence are used as custom accelerators for various time-consuming applications.
Knowing the underlying architecture of FPGAs, will help design better accelerators.

2.2.1 FPGA Architecture

A simple FPGA architecture is as shown in Fig. 2.1 [13]. The configurable logic
blocks (CLBs) as well as input/output (I/O) blocks are programmable and all these
are interconnected through programmable routing channels. A basic CLB is shown
in Fig. 2.2. It consists of LUT, a flip flop and a mux. The mux is used to choose
between direct output from the LUT or the registered LUT output. The respective
output for an input combination is stored in the LUT. A combination of such CLB
units is used to construct any desired logic circuit. A connect box is used to connect
the CLB outputs to the routing channels. A connect box is used to interconnect
various routing resources.

SRAM-based FPGAs are programmed using bitstreams. FPGA design flow is
shown in Fig. 2.3. The flow shows the various steps involved in hardware implemen-
tation that culminates in generation of bitstream starting from HDL or schematics.
High-level design languages like C are also being used to describe hardware. The

Fig. 2.1 FPGA architecture
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Fig. 2.2 Basic CLB
structure

Fig. 2.3 FPGA design flow

synthesis tools do optimizations on the hardware described and convert it into gate
level net-list. The translate tool packs these gates into LUTs. The place and route tool
places the LUTs in an optimized way so as to have a less critical path. Typically, this
is achieved by placing the LUTs representing the combinational logic (between two
registers) close to each other. The routing tool defines the interconnectivity between
the LUTs. This tool optimizes the use of long and short wires such that minimum
number of switch blocks is used. Then a bitstream to program each of the LUTs and
the interconnect are generated. The FPGA is programmed using this bitstream.
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Lots of research have been carried out on FPGA architecture both by academia
and industry. Several research groups have reported results on deciding the optimal
LUT size [1, 34, 51, 75]. Larger LUTs reduce the interconnect delays but occupy
more area and are slower because of the internal circuitry needed to decode the
output. The optimal LUT size as reported by many researchers lies between 4 and 6.
It is mostly dependent on the size of clustering of CLBs and the channel width. The
present commercial FPGAs have LUT sizes up to 8. Xilinx has six input fracturable
LUTs,whereasAltera has eight input fracturable LUTs [4, 92].As the name suggests,
“fracturable LUTs” can be broken and used as two smaller size LUTs.

Advances in FPGA-based reconfigurable computing (RC) technology over the
past decade has allowed researchers to exploit performance, power, area, cost and
versatility advantages in FPGA devices as compared to conventional microproces-
sor and ASICs [50]. More than a thousand-fold parallelism can be achieved for
low-precision computation [37, 38]. Previously FPGAs were used for glue logic
between incompatible systems, but now as technology has advanced much more
logic can be implemented on an FPGA. Hence FPGAs are being used as standalone
computing/logic units.

2.2.2 FPGA-Based Accelerators

Custom processors can be augmented to a base processor for accelerating compu-
tations. Xtensa processor from Cadence allows instruction set configurability [15].
Processors with custom instruction set can be developed using the tools. Custom
accelerators are usually implemented on FPGAs as they are easily adaptable. Taking
design decisions manually from a large number of choices based on complex trade-
offs including reuse, area and gain is cumbersome and time consuming. Computer-
aided design (CAD) tools have been developed that select optimal combination of
accelerators by throughly searching the entire design space [71]. These tools reduce
design time and make it easier for the designer to develop custom accelerators for
different kind of applications hence reusing the same setup and reducing the cost.
Recently many soft-core processors like Leon are available in public domain [33].
These are widely being used as multiprocessor systems on FPGAs. As the source
code for these processors is available, the designer canmodify the existing instruction
set according to application requirements to improve performance.

Typically, FPGA cards or boards are plug-in cards that are plugged into slots
available on the motherboard of computers. The boards contain one or more FPGAs.
The FPGAs are connected to each other by direct wired connections. User constraints
provided to the tools ensure that the hardware components in different FPGAs are
connected to the right pins. The communication interfaces between host and FPGA
are predefined during board design. Some boards use separate FPGAs for managing
data through the interfaces. The current FPGA boards use PCIe interfaces and can be
plugged into the PCIe slots available on CPUs [2, 42, 93]. Hardware implementation
is done in HDLs. The bit files to program the FPGAs are generated using respective
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FPGA tools. Typically FPGAs are programmed using these bit-files via application
program interfaces (APIs) which wraps around a device driver. As device capacity
of the FPGA changes, the API has to be modified to account for the granularity of
functions that are implemented on them.

Even though FPGA-based accelerators give promising results, their use is not
wide spread as they pose significant challenges due to limitations of application
development tools and design methodologies [52]. The construction of accelerators
consumes a huge amount of time and is very laborious. Tarek El-Ghazawi et al. did
a research study focusing on investigating key challenges [28]. The authors tried to
identify limitations of existing FPGA tools. In the report they discuss limitations that
are based upon each of the four application development phases namely “Formula-
tion,” “Design,” “Translation,” and “Execution”.

Critical design decisions are not made through algorithm design, architecture
exploration and mapping but rather mostly on ad hoc basis. This causes costly itera-
tions in the design flow. Many tools exist for designing accelerators from hardware
description languages (HDLs) or HLLs, but need expertise in hardware for exploiting
the FPGA resources properly. HLLs do not aid the designer to specify the concur-
rency required to fully exploit the features of FPGA-based systems. The lack of good
co-design tools and languages is a concern and this leads to manual design partition-
ing. The manual design and partitioning is specific to the interfaces present in the
accelerator card/board and hence it reduces portability and interoperability across
platforms. OpenCL is one such language which attempts to solve this interoperabil-
ity issue [82]. Many commercial vendors are supporting the use of this language
[4, 67, 92]. Even though the EDA tools using this promises easy implementation,
manual intervention is still required to get benefits for the specific accelerator [78].

Translation time is a major hurdle to FPGA synthesis. The place and route tools
take a long time and sometimes are not very efficient and require designer interference
to pack more logic. The execution challenges are that of run-time support for debug-
ging. Most tools don’t provide this feature. The tools for run-time reconfiguration
are also not very efficient.

2.2.3 Hard Embedded Blocks in FPGAs

Typically, FPGA implementation occupies more silicon area and run at slower clock
frequencies vis-a-vis ASICs. To implement large circuits using configurable logic
in the FPGA may some times need more than one FPGA. Use of multiple FPGAs
require more printed circuit board (PCB) space and more circuitry to manage the
I/Os between the FPGAs. Synchronization is a matter of concern. To alleviate this
problem, many of the commonly used sub-circuits in a design are available as HEBs
in FPGAs. As these HEBs are custom designed and not implemented as CLBs in the
FPGA, they occupy less silicon area and have higher operating frequency. Figure2.4
shows a simplistic diagram of a modern FPGA consisting of DSP units as HEBs. As
shown in the figure, additional HEBs are provided along with the CLBs and routing
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Fig. 2.4 Modern FPGA architecture

resources in the FPGA. Many a times, special routing resources are also provided
for the HEBs. Modern FPGA contains memory controllers, PCIe controllers, FIFO
controllers, serial transceivers, clock management, AES encryption units, ethernet
MAC blocks, etc. as HEBs [92].

The HEBs in FPGAs can be broadly classified as fine-grained HEBs and the
coarse-grained HEBs. The hardware blocks which are smaller in size and are used
frequently are usually implemented as HEBs. A hardware design using a number of
such fine-grained HEBs will be beneficial in terms of area, power and delay. These
finegrainedHEBsare typically distributed all over the area of theFPGA, and thus they
can be closer to the blocks using themandhence reduce the interconnect delays. Some
amount of configurability is provided to these blocks, so that a collection of them
can be used to build larger hardware blocks. The coarser grained HEBs are hardware
circuits which occupy significant amount of silicon area if they were implemented
using the CLBs. Since these blocks are large, the configurability is less. As these
blocks are pre-routed and do not use the interconnect blocks in the FPGA, they take
less area and can run at high clock frequencies. Table2.1 shows implementations
of two hardware kernels on a Xilinx Virtex-6 FPGA. These were generated using
Xilinx core-generator [90]. It can be observed that the equivalent silicon area used is
significantly less compared to CLB only implementations. For example, the 64-bit
signed multiplier unit uses 4265 slices, whereas the same implementation requires
16 DSP units whose equivalent area in terms of slices is 60, i.e., nearly two orders
less.

Some of the fine-grained HEBs available in modern FPGAs are the block RAMs
and carry-save arithmetic blocks. Almost all the applications requirememory to store
the intermediate results. These intermediate results are either stored in registers or
in memory blocks. The advantage of storing data in the registers is that they can
be written and read by many compute blocks, but they occupy more silicon area.
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Table 2.1 Resources
occupied by cores using only
slices and using DSP units
[92]

Core Slices DSP Eq. slices

64-bit signed multiplier 4256 0 4256

0 16 80

48-bit cordic unit 9138 0 9138

0 12 60

Bit-level operations can be easily done on registers. A disadvantage of using regis-
ters is that in FPGA implementations consisting of a lot of wide bit-width registers,
a lot of routing resources will be needed and thus may cause the operating frequency
to reduce. The memory blocks are preferred when the data from the block is needed
by very few compute units. Multi-ported memories are typically used in such sce-
narios, but they occupy more area and hardware support to keep a check on the “read
after write” (RAW) and “write after read” (WAR) hazards. Modern FPGAs have
memory blocks as HEBs. Embedded block RAMs were proposed and studied by
Wilton et al. [66, 86–88]. The authors propose various ways to build memories as
HEBs. Memories of various sizes have to be built based on the application. Choos-
ing the right size of memory block is an important issue in FPGAs. Larger blocks
will cause the memory to be unused, whereas the smaller blocks will cause rout-
ing congestion. Due to unavailability of multiple ports, larger blocks may sometimes
cause the data-starvation in the compute units. The authors propose design of smaller
memory blocks so that they can be combined to form larger blocks of memory. They
also show that hardware implementations can benefit from logic circuits implemented
using these memories as LUTs. Xilinx FPGAs provide 18 and 32kb embedded block
RAMs running at 550MHz [89]. Altera also provides embedded memories named as
MRAMs [5]. They are configurable and can be used to build larger memory blocks.

Various enhancements to the FPGA architecture have been done to improve the
hardware implementation of arithmetic operations. The carry chains are provided
along with the CLBs as HEBs to build efficient adders. The adder implementations
typically require 2 LUTs to implement logic for carry and the sum. The use of carry
chain reduces this as well as the interconnect delays. Parandeh-Afshar et al. [69]
propose a way to improve the performance of carry-save arithmetic in FPGAs using
generalized parallel counters. They show 1.8× improvement in energy consump-
tion. Many of the FPGAs provide digital signal processing (DSP) units as HEBs
[3, 91]. These DSPs units are configurable and can be used for performing addition,
multiplication as well as multiply accumulator operations. The newer DSP units also
support other bit-level operations. Beauchamp et al. [9] have proposed floating point
units as HEBs. The authors implement both single-precision and double-precision
floating point units as HEBs in FPGAs and show 55% area benefits and 40.7%
increase in clock frequency. Flexible embedded floating point unit, which can be
used both as single-precision and double-precision floating point units, has been
proposed by Chong et al. [21].
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Fig. 2.5 Shadow clusters for
performance benefits [44]

Configurable hard blocks have advantages as they can be used in wider applica-
tions without wasting the silicon area. The fabrics which have HEBs are expensive
since the user has to pay for the cores available for HEBs even if they do not use
them. This also effectively reduces the reconfigurable area for the same silicon area,
if the HEBs are not used. Jamieson et al. [44] propose shadow circuits to improve
the performance of designs without losing the flexibility of the FPGAs. The basic
idea is shown in Fig. 2.5. Here the shadow clusters and the hard circuits are separated
using the mux. The whole block is incorporated as HEB in FPGA fabric. The key
idea is to use the silicon area efficiently when the hard circuits can not be directly
used. The shadow circuits enable partial use of HEBs and thus increases the overall
fabric area usage. They also implement CAD tools to support this type of mapping.

A proper methodology is needed to evaluate the HEBs to be incorporated in the
FPGA fabric, in order to use the silicon area efficiently. Tool-flows to evaluate HEBs
are discussed in more detail in Chap.3.

One of the key areas which could benefit by using FPGA-based acceleration is
bioinformatics. Applications in bioinformatics domain are compute intensive. Data-
level parallelism can be exploited by hardware accelerators to speedup software
implementations. In the next section we review some important concepts in the
bioinformatics domain and introduce the need and scope of accelerators for two key
algorithms.

2.3 Bioinformatics

Bioinformatics is an interdisciplinary subject consisting partly of molecular biology
and partly of computers. It deals with use of computers to analyze and organize
biological data. This field has advanced so rapidly that nowadays chemists, mathe-
maticians, statisticians, and computer engineers work as a team to solve the problems
[24]. DNA sequencing costs have been reduced by increasing throughput by the use
of massively parallel DNA sequencing systems. These systems are capable of deter-
mining the sequence of huge numbers of different DNA strands at one time. These
“next generation sequencing” (NGS) systems allow millions of reads to be gathered
in a single experiment [40]. These sequencing techniques have led to exponential
increase in data. NGS aspires to find solutions in genetic analysis. Understanding
and analyzing this large volume of data is of immense importance to biologists. This

http://dx.doi.org/10.1007/978-981-10-0591-6_3
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large volume creates challenges in acquisition, management and analysis of data.
The major research areas in bioinformatics are sequence alignment, gene structure
prediction, construction of phylogenetic trees, protein folding and drug design [23].
Many software tools have been developed to aid biologists in their respective fields
[6, 31, 49, 59, 74]. Computer scientists and biologists are working together to over-
come the challenges of rapid interpretation of the data. We describe two important
bioinformatics applications that we address in this book, namely protein docking and
genome assembly.

2.3.1 Protein Docking

Study of inter-molecular interactions has various applications in biology, especially
in the process of drug design. An important and time-consuming part of drug design
process is the “virtual screening”, which is a computational technique used to find
the drug molecules which binds well with a particular protein molecule from a
large library of probable drug molecules [47, 60]. “Protein docking” is a software
applicationwhich is used to do this screening process. The docking application scores
the drug molecules based on the binding parameters. The docking program ranks the
protein–ligand complex based on scoring functions. Scoring functions predict the
strength of the complex. The highly ranked drugs or drug conformations are then
checked to see if they are suitable for human beings. Even though the computer-based
virtual screening is faster than chemical processes, most of the docking tools perform
computationally intensive calculations and take large amount of time to execute on
CPUs. The medical field is gradually moving towards personalized medicines and
hence therewill be a need to do a virtual screening on a large scale. Jenwitheesuk et al.
[45] have proposed that computational screening of small drug-likemolecules against
multiple proteins will increase the efficiency for finding drugs for drug-resistant
diseases. Implementing such a design for drug design will take significant amount
of time and accelerating docking program becomes very important for making such
a system pragmatic.

An example of protein complex is shown in Fig. 2.6. The diagram shows a ligand
which is bound to the protein. Here the protein–ligand complex is in a state where
overall free energy of the system is minimum. Docking will help find the orientation
of the ligand so as to give such minimized free energy state system.
There are three types of docking [36]:

1. Rigid molecular docking
2. Flexible docking
3. Combination of both rigid and flexible docking

Rigid docking is a type of modeling in which the internal geometry of the interacting
elements are kept fixed and relative orientations are varied. Changes in the internal
geometry might occur during the formation of complex and docking which takes this
into consideration is called flexible docking. The combination of these two is also
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Fig. 2.6 Biological
assembly image for docked
complex [30]

used, where a small subset of possible conformational changes are taken into account
to reduce the computation time. Some of the tools used for docking are FTDock [81],
Autodock [62], PIPER [49] and Hex [26], ZDock [17], F2Dock [7].
Typical docking application involves the following steps:

1. Discretize the molecules
2. Rotating the molecules
3. Shape complementarity score calculations
4. Electrostatic complementarity score calculations

The discretization process involves placing the molecule in a 3D grid and noting the
position of each atom in that molecule. This process is done for both the proteins
in case of protein–protein docking, and both ligand and protein in case of protein–
ligand docking. The total grid size is dependent on the size of molecule. The grid
should cover the whole of the larger molecule. Resolution of the grid decides the
accuracy of the experiment. Smaller grid resolution gives more accurate results but
require more computations vis-a-vis large grid resolution. The discretized molecule
is stored as a 3D matrix.

To study the different orientations of the molecules and to study their binding,
systematic rotation of the protein or ligand molecules is carried out. Typically, larger
molecule’s position/orientation in the grid is kept constant and the smaller molecule
is rotated around the axes. The various scores are calculated for each of the rotated
smallermolecule.Here also, the resolution of rotation is chosen based on the accuracy
required. For example for a resolution of 6◦, there are 54,000 rotations possiblewhere
for 12◦ rotation 13,500 rotations are possible. Some of the approaches calculate other
scores based on bonding.

Shape complementarity score and electrostatic complementarity score are cal-
culated using correlation functions. For electrostatic complementarity the Coulom-
bic forces on each of the atom by other atom is stored in the 3D matrix. These
correlation functions are mostly convolution of the two matrices representing the
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discretized matrices. The convolution function ‘C’ of two matrices ‘A’ and ‘B’ is
given by (2.1).

C(i, j, k) =
L∑

l=1

M∑

m=1

N∑

n=1

A(l,m, n) ∗ B(i − l, j − m, k − n) (2.1)

The calculation of the convolution function on general purpose processors is expen-
sive as it involves lots of multiplications. In many of the docking applications, FFTs
are used to reduce the number of multiplications [7, 49].

2.3.1.1 Need for Speedup and Use of Accelerators

Even though a significant number of multiplications are reduced by use of FFT
to log2(N ) vis-a-vis direct convolution which has N 3 multiplication, 3D-FFT still
takes a very long time to execute on processors. The run-times for the various docking
applications are shown in Table2.2 which are reported by Dave et al. in [73]. The
authors compare the run-time of Hex docking application [26] which is their own
implementation, with the run-times of two other docking applications—ZDock [17]
and PIPER [49]. The docking was carried out for Kallirein A/BPT1 complex. The
protein molecules grid size was 128 and the ligand molecules grid size was 32. The
processor used was Intel Xeon processor and the GPU used was Nvidia GTX-285.
The ZDock applicationmakes use of convolution function directly. ZDock does some
optimizations for carrying out convolution function on sparse matrices. Piper [49]
uses 3D-FFT for accelerating convolution function,whereasHex docking application
uses 3D-FFT in spherical coordinates to accelerate computations. The run-times of
using 1D-FFT is also shown. It can be seen that there is significant reduction in
execution time when GPUs are used. For example Hex docking computing 3D-FFTs
gives speed-ups of about 2.7×. The GPUs carry out the FFT computation in parallel
on the multiple floating point units and hence exploit the parallelism available in the
application. Bharat et al. have attempted to accelerate PIPER docking application
using FPGAs [10]. They report that for smaller sized molecules (grid size <16)
FPGAs perform better than GPUs. They also report that GPUs perform better for

Table 2.2 Run-times of
various docking programs
[73]

Docking Docking Run-time (s)

Software Type CPU GPU

ZDock 3D 7172 –

Piper 3D 468,625 26,372

Hex 1D 676 15

3D 224 84
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docking of larger molecules. They report that FPGA implementation based on direct
correlation function is better in FPGAs and FFT-based implementations are better
suited for GPUs.

2.3.2 Genome Assembly

The basic building block of all organisms is the cell. All the cells (irrespective of the
size of organism) have a nucleus which carries a genetic material known as deoxyri-
bonucleic acid (DNA). DNA holds the hereditary information and is responsible
for the controlling and functioning of the organism. DNA is made up of four bases:
adenine (A), guanine (G), cytosine (C), and thymine (T). Adenosine (A) pairs with
thymine (T), and cytosine (C) pairs with guanine (G) forming base pairs (bp). This
pairing is due to weak hydrogen bonding and is the basis for DNA replication. A seg-
ment of a DNA molecule can be written using the first letter of the bases it contains
(eg., ...TACGTAG...).

The complete set of all genes along with noncoding deoxyribonucleic acid (DNA)
in an organism is called a genome. The study of genomes of various organisms is
known as genomics. It has a lot of applications inmedicine, biotechnology, anthropol-
ogy, forensics and synthetic biology. Also, comparative study of different genomes is
helpful for evolutionary studies. Increasingly, genomics is also being used to study the
contribution of genes in many diseases and is aiding in the development of personal-
ized drugs. Hence, genome construction is very important, which helps considerably
in the study of various biological processes in an organism.

DNA sequencing technology helps in generating the data needed for construction
of genomes. Recently, next-generation sequencing (NGS) platforms are being used
for DNA sequencing. These platforms generate short fragments called “reads” of
length ranging from thirty-five to few hundreds of base pairs. These reads are part
of a large genome containing millions of base pairs (the size of the human genome
= 3 × 109 bp). The NGS platforms generate large amounts of data at very low cost
and at a greater speed when compared to older platforms [65].

The large amount of data has posed many challenges for computer scientists who
develop softwares to analyze these data. New algorithms and data structures have
been proposed to speed up the analysis [8, 58]. Databases have been created and
statistical analysis programs have been developed for retrieving specific information
from this data. Sequence assembly is a computational biology problem where the
reads generated from the NGS machine are used to build the whole genome.

An example of assembly is shown in Fig. 2.7. A biological sample is preprocessed
and given to a sequencing machine, which generates a set of short reads. These short
reads are assembled to construct the genome. The ‘T’ in the read CTGTGTGTT, is
an error as the exact match to the genome at that position was supposed to be ‘C’.
The error could be identified as the frequency of occurrence of ‘C’ at that position
is more than that of ‘T’. The error can occur during the sequencing process by the
sequencing machine. Error can also occur while assembling the genome from the
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Fig. 2.7 NGS assembly: the DNA sample is given to sequencer, which generates read-set. The
read-set is processed in CPUS to generate contigs

short reads, where the read is falsely mapped to a particular location of the genome.
Due to these errors, genome assembly problem is more difficult to solve than the
well studied shortest super-string problem [65].

2.3.2.1 Genome Assembly Softwares

Many types of software have been developed to do assembly [61]. Algorithms are
modified in order to alleviate some of the complexities involved in the assembly
and to execute efficiently on processors. Assembly software solutions can be divided
into two categories; mapping based comparative assembly and de novo assembly.
In the former method, assembly is done by mapping the reads to an already pre-
existing reference genome. Even though the genomes of a particular organismcontain
lots of similarities, there are certain dissimilar regions which makes each organism
unique. These dissimilar regions are of interest to biologists as they show particular
behavior unique to that individual organism. Mapping the reads to a pre-existing
reference genomemight cause this uniqueness to be destroyed and hence the software
assemblers allowcertain amount ofmismatches and gaps. Someof themapping based
assembly programs are SOAP [55], MAQ [54], Bowtie [53], and RMAP [79].

The later method is called de novo assembly where the information is extracted
from the reads and their overlaps. De novo assembly is a type of assembly process
where genome is constructed without using a reference genome. It is the only way
to construct a genome if the reference genome does not exist. As the shorter reads
have less overlap information, the reads are generated with much more coverage
in order to construct the genome. The overlap information from the reads is used
to construct the contiguous consensus sequences known as contigs. The genome
is constructed using these contigs using a process known as scaffolding. Some of
the de novo assembly software programs are Velvet [94], Edena [39], PerM [18],
BFAST [41] and Minia [20]. De novo assembly takes more computational time than
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Table 2.3 Run-time of various de novo genome assembly softwares [12]

Software application Number of cores RAM Run-time

Hyda [63] 48 512GB 14h

Abyss [77] 12 4GB each 13h

Allpaths-LG [14] 48 512GB 151–215h

Velvet [94] 32 300–500GB 3.5weeks

Celera [64] 32 256GB 9.5days

SOAP de novo [57] 24–32 110–150GB 48–72h

Newbler [76] 12 130GB 18h

Ray [11] 256 768GB 36–72h

Monument [19] 16 140GB 1day

mapping based assembly. Since the mapping based assembly includes a pre-existing
reference genome during mapping, the assembly process is biased and hence in
certain situations bioinformaticians prefer to use de novo based assembly.

Clearly, like most of the bioinformatics applications, NGS assembly is also data
dominated. Even though compute infrastructure ranging from server racks to cloud
farms exist for solving these problems, the time taken is enormous. For example
assembly of human genome using PASHA software took around 21h on a 8-core
workstation with 72GB memory [56]. The run-times of various assembler programs
as reported byBradnam et al. [12] are shown in Table2.3. The table shows the number
of cores used, maximum RAM usage in most of the cases (authors report RAM
available in the system in some cases) and the run-time. The run-times were reported
for assembling snake, fish and bird genomes. They attempt to construct the genome
for the first time and since they do not have any reference genome they use de novo
genome assembly. It can be seen that the run-time taken by different softwares vary
from 10h to 3.5weeks. Each of the assembler softwares have their own pipeline/flow
to construct the genome, starting from processing of the biological sample. The
selection of assembler application is also based on the sequencing machine used for
generating the reads. For example, 454-sequencing machine provide a tool called
Newbler which is a proprietary application that works best for the data it produces
[76]. As most of the applications take significant amount of time to execute, there is
a need to accelerate them.

2.3.2.2 FPGA-Based Acceleration

Fernandez et al. [79] have reported FPGA acceleration of NGS mapping [29]. They
show speedups up to 4× over RMAP software. The reads are stored in registers in
the FPGA and the reference sequence is streamed through shift-registers for compar-
ison. Multiple reads are compared with the reference genome sequence and hence
parallelism is exploited to get speed-ups over software application. Knodel et al. [48]
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have also accelerated NGS short read mapping. They use a similar approach used by
Fernandez et al. [29] and show that the performance is comparable to many software
applications likeBowtie [53]. Tang et al. [84] report 42× speedup over software PerM
[18] using FPGAs. PerM uses comparative assembly. They construct a pipeline of
Processing Elements (PEs) in FPGAs. The reference sequence is compared with the
reads in the PEs. The number of mismatches is counted and if it is less than a thresh-
old, the position of the read is reported. Pairwise sequence comparison is executed in
parallel and thus speedups are obtained software implementations. Olson et al. [68]
has also shown acceleration of short readmapping on FPGA. The authors show 250×
improvement over BFAST software [41] and 31×when compared toBowtie [53]. All
short sequences of fixed length (eg., 22) known as “seeds” in the reference sequence
are indexed in a table. Each of the “seeds” present in the “reads” are searched in the
index table. If the seed is found in table, Smith–Waterman algorithm is used to com-
pare the read with the indexed portion of the reference sequence [80]. The hashing
and the Smith–Waterman algorithm is implemented in FPGA. Speed-ups over soft-
ware is obtained because of the hash function, which reduces the comparison and due
to the fast implementation of dynamic programming (Smith–Waterman algorithm)
on FPGAs. The Convey Computer firm has developed the Convey GraphConstructor
(CGC), which use FPGAs to accelerate de novo assembly [25]. They show speedups
of 2.2× to 8.4×. There is very little work reported in literature on FPGA acceleration
of de novo genome assembly. It can be seen that there is a need to accelerate many
assembly applications.

2.4 Summary

In this chapter we have discussed the various accelerator architectures. We have
discussed FPGA-based accelerators in detail. We have described the basic archi-
tecture of FPGA and how they have evolved to include HEBs. We report some of
the research works related to HEBs. We have introduced some basic concepts of
bioinformatics and describe protein docking and genome assembly which are two
important bioinformatics applications. We have discussed works related to acceler-
ating these applications specifically using FPGAs. With this background, the DSE
is explained in the next few chapters.
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Chapter 3
Methodology for Implementing Accelerators

Abstract Many software implementation of applications have been accelerated
using FPGAs. Compute intensive kernels from the application are implemented in
hardware and executed in parallel to achieve speedup over softwares. FPGA con-
sists of CLBs (consisting of LUTs and flip-flops) and interconnects which are pro-
grammable. HEBs implement performance critical components efficiently vis-a-vis
their implementation using configurable logic and thus improve the performance.
Adding of HEBs to FPGA fabrics may not always give performance benefits, as
they occupy significant amount of chip area and sometimes may not be usable due
to limitations of the memory bandwidth. A proper methodology to design HEBs
and estimate the expected performance gain would be a necessary component of
any design methodology. It is expected that more HEBs will be embedded into
FPGAs and such a methodology will aid in building efficient reconfigurable fabrics.
In this chapter, we describe a methodology to design accelerators using FPGAs with
custom-designed HEBs.

3.1 Design Space Exploration

Typically, hardware accelerators are used to reduce the execution time of
software implementations. When the accelerators have fixed architecture like the
GPUs and CELL, the application acceleration problem involves efficient mapping of
the application to the architecture. In FPGA-based accelerators, one more dimension
is added to the problem due to reconfigurable nature of FPGA fabric. This makes
the hardware–software codesign problem hard to solve as there are lots of design
choices to be evaluated.

Speedups are achieved by identifying the compute intensive kernels in the
application and implementing them as hardware blocks in FPGAs. Sophisticated
hardware implementations can be done using the HEBs available in modern FPGAs.
Accelerator designs having hardware implementations using HEBs take less area
and give better speedups vis-a-vis designs not using them. For example, many appli-
cations which involve large bit-width multiplications perform better when DSP units
are used. DSP units are available as HEBs in most of the modern FPGAs. HEBs do
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Fig. 3.1 Y-chart for design
space exploration [5]

reduce the available configurable logic (if we consider the chip area as fixed), but still
vastly outperform. For example, the area equivalent of one DSP48 unit available as
HEB in Xilinx FPGA is around five slices, whereas an equivalent multiplier imple-
mentation on a FPGA (without DSP unit) will require much more than five slices.
A number of different HEBs can be added to the FPGA in order to get performance
benefits. Identifying the right HEBs based on the application is very important.

Methodologies have been developed andmany tools are available to design system
on chips (SoCs). These SoCs are typically designed for a specific set of applications.
The Y-chart approach shown in Fig. 3.1 is commonly used for design of SOCs [5].
A similar approach can be used for designing FPGAs with custom HEBs. This
approach has been evolved for achieving the design goals which could be optimiza-
tion of power, energy, performance, or a combination of them using specific trade-off
factor. Extensive design space exploration is carried out using the different parame-
ters to come upwith the best-suited architecture. The system design with incremental
changes is repeated at different levels of abstraction. At higher levels of abstractions,
many design choices can be evaluated with ease as the time taken for the evaluation
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is small. As we go down the abstraction level, the simulation time dominates and
thus limits the range of design parameters that can be explored.

In the Y-chart method, an architecture of a base system is built in the beginning.
The architecture represents the complete system including the interfaces with the
external devices. In a system containing an FPGA board, the communication inter-
faces between the host and the FPGA board like PCIe are well-defined. The size
of the FPGA is fixed and so the number of CLBs, the interconnects, I/O pins, etc.,
available is known to the designer. An approximate hardware implementation is done
on the FPGA which is incrementally improved in the later stages.

The application set is the input to the design space for which an optimal FPGA
fabric has to be designed. Usually, the application set belongs to a particular domain
having similar characteristics. The application characteristics are identified from the
set. The application is profiled at different stages to get the estimates of the time
taken by different functions to identify the kernel.

Mapping the application onto the architecture is themost difficult part of the design
space exploration. This is a typical hardware–software codesign problem where the
parts that have to be executed in software and the parts that have to be executed in
hardware have to be identified. The memory access patterns have to be studied based
on the memory hierarchy available in the whole system. The communication delay
for the data transfer between the interfaces available between the processor and the
hardware has to be considered.

Performance estimation is done by building models for each component in the
system. During the initial design phases analytic models are useful and faster to
use. Building analytical models for certain type of systems is very difficult and so
simulation at different levels of abstraction can be used. For example, analytical
models for the cache is very difficult and so cache simulators are used for estimating
time taken for accesses accross memory hierarchy. Simulations also help to check
the correctness of the system. The trade-offs in the quality of output can be studied
by these simulations. Simulations at higher level of abstractions typically have some
error in the performance numbers, as they generally use lumped delay models. The
higher level simulations are fast and thus it is possible to explore manymore different
design choices. As we go down the abstraction level, the time taken for performance
estimates increases, reducing the range of design choices that can be explored.

Performance numbers are obtained from the performance estimates. Based on
these numbers, the architecture changes are carried out to meet the design goals. The
applicationmodifications are also done based on these numbers. Various decisions on
the quality of the output are also taken during this phase. The bit-width optimizations
are done both for reducing the communication delay and reducing the time taken for
execution. The decision on type representation for different data elements (integer,
fixed point, floating point, double floating, etc.) are also taken based on the perfor-
mance numbers along with quality of output. Both application and hardware designs
are changed to accommodate such modification in the data types. The bandwidth
requirements, communication as well as memory, for the particular architecture and
data are computed. The bandwidth study influences scalability of the system, as well
as helps to identify the modules that are likely to be starved or bandwidth limited.
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The need and size of FIFOs to connect the modules to reduce starvation are also
obtained from these performance numbers. The performance numbers at different
levels of abstraction provide insight to make the right trade-offs to obtain an optimal
design.

3.2 Tools for Carrying Out Design Space Exploration

Various tools, each specialized in certain functionality are used to carry out design
space exploration. We have used some open source tools as well as proprietary tools
for evaluating HEBs in FPGA. The proprietary tools from companies require the
designer to adapt their flow for designing and implementing hardware in FPGAs.
We discuss the tools and the tool flows in the following subsections.

3.2.1 Profiling

The first step in mapping applications to hardware is profiling. Profiling the appli-
cation enables us to analyze the bottlenecks in the program execution. It also aids in
program optimization. Profiling tools help in identifying the program phases which
in turn help in modifying the underlying algorithms. The small fraction of the pro-
gram which takes most of the execution time can be identified. Typically, these are
small portions of the code that are executed multiple number of times. Identification
of such code segments generally drives hardware–software partitioning. These tools
also enable the designer to know the communication overheads in different phases.
Ideally, profiling done on the actual platform gives better insights for program opti-
mization and hardware–software partitioning, but such exploration is typically infea-
sible as the actual hardware is to be built. Typically, profiling is done starting from
very low level granularity and the profile data is analyzed for performance on yet to
be designed systems.

Even though profiling tools run on CPUs, the profile data is very useful in design-
ing hardware accelerators. Compute intensive kernels are identified using profiling
tools. To achieve speedups, multiple copies of these compute intensive kernels are
implemented in hardware as processing elements (PEs). Memory bandwidth avail-
able between the FPGA and the CPU limits the supply of data to the PEs which
in turn limits the number of PEs that can be kept busy. Profiling tools are used to
analyze the memory requirements for a single kernel and this is used to estimate
the number of PEs that can be kept busy for a given bandwidth. For significantly
high memory bandwidths, the number of PEs that can be implemented in hardware
is limited by the FPGA hardware resource constraints. This can further be increased
using multi-FPGA boards.
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Some FPGA implementations consist of deep pipelines which reduces the
requirement of very high bandwidth. In such cases too, the profiling tools will help
in deciding the data required by one pipeline stage. This can be used to do retiming
in the hardware design, which may reduce the FPGA resources.

We used gprof [1], VTune [4], PIN [6] for profiling the applications. GNU prof
also known as gprof is a profiling tool that can be used to determine the parts of a
program that take most of the execution time. This profiler works with gcc and g++.
The program executable has to be made using the ‘-pg’ option when compiler is
being used. When this program is executed, a file with name ‘gmon.out’ is produced.
The time taken by the executable thus generated is typically more than the normal
executable as the profile data is collected. The command gprof is run to get the details
of the profiled data. It also generates a call graph showing the dynamic hierarchy of
the program parts. The profile data lists the various functions that are executed along
with the time taken and the number of times the function was executed.

VTune and PIN are proprietary tools from Intel. VTune uses PIN tool in the
background for getting the profile data. The tool has a good GUI and displays the
call graph. The profile data is also displayed along with call graph. The time taken by
function and number of times it is executed is shown. The assembly instructions and
the number of times they are executed is also shown. Many options can be chosen
for instrumenting the profile data. For some of the options the code is executed
multiple number of times to show the exact execution trace. PIN is a dynamic binary
instrumentation tool, which adds certain instructions in the code to enable profiling.
Many optimization techniques are used to reduce the run time of the tool as well as
reduce its memory overhead.

3.2.1.1 ASIC Synthesis

The HEBs are identified by analyzing the profile data. The HEBs have to be
implemented in hardware and ASIC synthesis has to be done to get the exact area
and timing information about the modules. We modeled the HEB using hardware
description languages; VHDL and Verilog. This code was simulated and checked
for correctness using Modelsim simulator [2]. The ASIC synthesis tools first convert
the HDLs into their proprietary intermediate formats. The optimization is carried out
in the intermediate level code and then the intermediate code is broken down into
standard cells/gates provided in the form of library. The library contains different
variations of the gates (as well as conditions) and based on the design goals the right
library elements are chosen and the intermediate code is mapped to such hardware.
Lots of optimizations are carried out after themapping based on timing, fan-outs, and
other parameters. The tool gives the area and the critical path of the circuit, which
limits the clock period. We have used Synopsys Design Compiler [8] tool for doing
the ASIC synthesis to obtain the clock period and the area of the HEBs.
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3.3 Design of FPGAs with Hard Embedded Blocks

The HEBs have to be created in the FPGAs and the hardware description should
capture the HEBs. The proprietary tools from Xilinx and Altera do not directly
provide such tools to include HEBs in their flow. Versatile place and route (VPR)
tool from University of Toronto have developed a methodology and associated tools
for doing the evaluation of HEBs [7]. Virtual embedded block (VEB) is another
methodology from Imperial College London that can be used for evaluating potential
HEBs [3].

3.3.1 VPR Methodology

The VPR tools provide the complete tool flow for evaluating FPGAs with heteroge-
neous blocks. The design flow entry is using VHDL. The architecture of the FPGA is
defined in an architecture description file. Here the size of LUTs, the interconnects,
and available resources can also be defined. This description as well as the VHDL
code is given using ODIN tool for synthesis. The tool does mapping of the inter-
mediate code onto the resources available in architecture file. The HEBs supported
were multipliers. If other HEBs have to be included, the tool has to be modified for
optimization. The T-VPACK tool does the packing of the design into LUTs and does
the clustering of the LUTs to optimize mapping on FPGA. The VPR tool then places
and routes the interconnect between the packed LUTs. This will give the critical path
and the resources occupied by the design. This can further be used in the flow to get
the performance numbers for application acceleration.

3.3.2 VEB Methodology

The VEB flow is different from VPR. The VEB methodology uses already existing
tools and evaluates inclusion of HEBs in existing commercial FPGAs. The Xilinx
tool flow (ISE) is used starting from the design entry to the place and route steps. The
HEBs are modeled as dummy virtual blocks in the whole design. The VHDL code
has to be modified to use these dummy blocks. The dummy blocks area and critical
path should be equivalent to the HEBs delay which is obtained from ASIC synthesis.
If it is not possible then the area can be separately synthesized to get area estimates
and timing can be separately synthesized with different dummy blocks. The dummy
blocks are introduced into the design as black boxes which are either hard macros
or relationally placed macros (RPMs) in the Xilinx flow. RPMs have flexibility in
shaping the HEB. Hard macros fix the shape of the HEBs. The design with such
hard macros is placed and routed to obtain the area and critical path of the whole
design. These values can be used further in the flow for estimating performance of
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the application. We have used VEB flow in our experiments as we wanted to evaluate
application acceleration for current FPGAs with HEBs. In the presented work, the
HEBs designed are not derived from existing HEBs.We created dummy blocks using
the ASIC synthesis results. Also, actual devices with the proposed HEBs have not
been fabricated and performance gains reported are on the basis of the area and delay
obtained from synthesis.

3.4 Methodology for Designing FPGAs with Custom Hard
Embedded Blocks

We follow a similar approach as the Y-chart approach for the system design, but
our focus is on implementing custom HEBs in FPGAs. The system is evaluated for
designing FPGA-based accelerators incorporaingHEBs. The various parameters that
effect the design like the number of HEBs and the bandwidth requirement for using
the HEBs efficiently is analyzed. The methodology to evaluate HEBs in FPGAs

Fig. 3.2 Methodology to design hard embedded blocks in FPGA in the context of FPGA-based
accelerators
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for accelerating an application is shown in Fig. 3.2. The flow diagram on the left
depicts the generic flow for accelerating applications using FPGAs. The flowdiagram
on the right shows the corresponding flow for design and evaluation of HEBs in
FPGAs. Here the design of HEBs is done to maximize speedup over software under
resource constraints. Profiling of an application is done to identify various kernels
at different levels of granularity. Granularity can have a significant impact on the
external memory bandwidth as some of the data accesses can be converted from
external memory accesses to internal memory accesses. This would typically push
the partition to larger granularity. This needs to be balanced against “reuse” potential
of kernel amongvarious applications aswell as “internal”memory capacity. Typically
in popular FPGA platforms (like Xilinx), these internal memory blocks would be
implemented using BRAMs. The part of the sequential code that takes significant
amount of time during execution is chosen as a kernel. HEB is designed based on
the kernels extracted from the application and is coded using a hardware description
language (HDL). The ASIC synthesis of the hardware description of the kernels can
be carried out for different performance parameters like area, speed, and power. In
our present methodology, we have not considered power as a parameter but is part
of our future work.

The profile data of the application which has to be accelerated is generated and
the data access patterns are analyzed for the inputs to the HEBs. There can be many
ways to implement the application using the HEBs. This also depends on the amount
of concurrency and pipelining stages achievable including overlap of I/O and com-
putation time. This essentially corresponds to the FPGA architecture constrained
design space to be explored using the selected HEBs.

Performance evaluation is carried out on each type of design implementation
using the HEB(s). For a particular implementation of the application kernel using
HEBs, the memory bandwidth requirement is analyzed. The number of HEBs which
can be incorporated in a particular device would be constrained by the device size.
Based on memory bandwidth requirement, and area constraints, an optimal number
as well as combination of HEBs is chosen for the fabric. This becomes an important
factor as the HEBs occupy significant area of the FPGA and can be used only for
a specific set of function(s)/operation(s). If the memory bandwidth cannot support
effective utilization of large number of HEBs, then there would be a lot of chip
area that would not have been effectively utilized. The architecture description of
the FPGA is built considering all of these design considerations. The application
can be mapped to the new fabric using any of the flows like VPR or VEB and the
application acceleration can be estimated. The area and the speed at which design
works are obtained and compared with the implementation of the application on
existing hardware accelerators like FPGA without HEBs as well as software only
implementation.
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3.4.1 Performance Estimation of Application Acceleration

The placed and routed design gives the clock period which can be used for
performance estimates. The VEB methodology is used to obtain these parameters.
Analytical models can be built to calculate the overall execution time of the appli-
cation on systems with FPGAs incorporating these HEBs. Typically, such FPGA
accelerators would be built on separate cards with standard interfaces (like PCIe)
to the processor. Analytical models also have to capture the communication delays
between the different modules and the delays in the interfaces between host and the
accelerator cards. For some of the systems, it is difficult to build analytical mod-
els where the speedups are significantly dependent on input parameters. System
simulation is the only option for such designs. The system simulation can be done
by modeling in system-level modeling languages such as System-C. We have used
analytical model for “Docking” application and system level model for “Genome
Sequencing” application.

3.5 Summary

Amethodology to evaluate effectiveness of HEBs while exploring design space will
be helpful in designing future fabrics. In this chapter, we have proposed a method
to explore and evaluate HEBs for FPGA-based accelerators. Our exploration can be
used to estimate the number of HEBs to be embedded for effective acceleration. This
methodology can be used to improve the quality of HEBs. Clearly, external memory
bandwidth, area constraints that limit the number ofHEBs aswell as internalmemory
size constraint are important parameters to be considered. Our exploration consid-
ers all the above constraints to predict the speedup for the FPGAs incorporating
these HEBs. In the subsequent chapters, we discuss acceleration of two bioinfor-
matics applications. We evaluate custom HEBs for these two applications using our
methodology.
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Chapter 4
FPGA-Based Acceleration of Protein Docking

Abstract In this chapter, we discuss FPGA-based acceleration of a commonly
used protein docking application. The docking application is compute intensive
and involves floating-point computations. We used the methodology discussed in
Chap.3 to accelerate the application. Accordingly, we explain the identification of
kernel from the software implementation and their FPGA implementation to get
performance benefits.

4.1 FTDock Application

There are many software docking applications as discussed in Chap.2. We chose
FTDock application, an open-source implementation of rigid-body docking and show
that it can be accelerated using FPGAs. Most of the FFT-based docking applications
are provided as executables as open-source. For understanding the application and
accelerating it, we need the code and hence we chose FTDock software, which pro-
vides the C-code under general public license (GPL). FTDock application performs
rigid-body docking on two molecules. FTDock outputs multiple predictions that
can be screened using biochemical information. FTDock implements shape com-
plementarity function developed by Katchalski-Katzir et al. [1] and an electrostatics
complementarity Fourier correlation function defined by Gabb et al. [2]. The block
diagram is shown in Fig. 4.1. The inputs to the application are two molecules, a large
molecule ‘A’ and a small molecule ‘B’. These molecules are typically in protein
data bank (PDB) file format. PDB format is a text file format which describes the
3D structure of the molecules. This file describes the coordinates of the atoms that
are part of the protein. These files are preprocessed to remove the hydrogens and
extra oxygen at the carboxyl terminal. Each molecule is discretized and placed in a
3D grid of the definite grid size (cuboid). The number of unit-cubes in the grid will
determine the memory size, as the data in each grid unit has to be stored. The FFT
word length will depend mainly on this grid size (length of the edge of the cube).
This becomes an important factor which determines the speedup as this data has to
be sent for computing through a bus.
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Fig. 4.1 Block diagram of FTDock

The grid span is calculated by (4.1).

grid span = 1 + diameter of molecule 1 + diameter of molecule 2 (4.1)
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This grid span is divided by a definite grid size to get the actual number of grid
units. Shape complementarity score (SCS) and electrostatic complementarity score
(ECS) are calculated on the discretized grid. The electrostatic complementarity is
used as a binary filter and the ones with positive scores are neglected. The best
three conformations based on SCS with negative ECS are selected and stored. The
molecule ‘B’ is rotated and then discretized. The scores are calculated on the rotated
molecule ‘B’. The process is repeated till all rotations of molecule ‘B’ are finished.
The stored conformations are arranged in decreasing order of SCS and the best 10,000
values are selected, which are used by other applications for further processing and
filtering.

4.1.1 Shape Complementarity

Geometric surface recognition is used in finding the shape complementarity score.
The block diagram is shown in Fig. 4.2.

Each of the molecules ‘A’ and ‘B’ are placed in a 3D grid of N ∗ N ∗ N, of
definite grid size (default 7Å). Every node is assigned a value based on the (4.2) and
(4.3).

Al,m,n =

⎧
⎪⎨

⎪⎩

1 for surface,

ρ for core,

0 outside.

(4.2)

Bl,m,n =
{
1 inside molecule,

0 outside molecule.
(4.3)

1.5Åsurface layer on molecule ‘A’ is used to score a node on the surface. A grid
node within 1.8Å is considered within the core. ρ has a default value of −15. ρ

actually defines the degree of acceptable surface overlap. The application calculates
the score by superimposing grids as shown in Fig. 4.3 and translating the movable
grid ‘B’ by shifts of α, β, and γ angles and the correlation function based on shape
complementarity is calculated using (4.4).

Cα,β,γ =
N∑

l=1

N∑

m=1

N∑

n=1

Al,m,n Bl−α,m−β,n−γ (4.4)

A negative score indicates that there is overlap between the molecules and higher
score shows better surface complementarity. The score calculation has Θ(N 6) com-
plexity as there are N 3 multiplications for N 3 transformations of α, β, and γ . This
complexity is reduced significantly to Θ(N 3log N ) by using FFTs.
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Fig. 4.2 Block diagram for
calculating shape
complementarity score

Fig. 4.3 Shape
complementarity score
calculation after
superimposing grids
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The correlation function is calculated using FFT by using the (4.5) and (4.6).

FFT(C) = FFT∗(A) ∗ FFT(B) (4.5)

C = IFFT[FFT(C)] (4.6)

where FFT∗(A) is the FFT of the complex conjugate of matrix ‘A’. Molecule ‘B’ is
rotated about one of its Euler angles until all orientations are captured. The rotation is
done around the geometric center of themobilemolecule in steps ofα. The results are
accurate for smaller angles of α, as score calculation will be done at more points, and
chances of getting the best orientation increases. But as α decreases, the number of
FFTs which has to be evaluated increases and hence the computation time increases.
The default value ofα is 12◦ in the FTDock application. There are 360 ∗ 360 ∗ 180/α3

orientations. For example, there are 13,500 orientations for 12◦ rotation. Many of
these orientations are degenerate and are removed by using (4.7) [3],

α = cos−1

(
tr

(
R1 ∗ RT

2

) − 1

2

)
(4.7)

where R1 is the rotation matrix of the first orientation, RT
2 is the transpose of the

rotation matrix of the second orientation, and tr is the matrix trace. Thus for 12◦
rotation, there are 9240 nondegenerate rotations.

4.1.2 Electrostatic Complementarity

Electrostatics also plays a very important role in the docking process. A simple
Coloumbic model is used to calculate the electrostatic complementarity. Specific
charges are assigned to each atom of the protein and then placed in a grid using
Table4.1 [2].

Table 4.1 Charges used in Coulombic electrostatic fields [2]

Peptide backbone Charge Side-chain atoms Charge

Terminal-N 1.0 Arg-Nη 0.5

Terminal-O −1.0 Glu-Nε −0.5

Cα 0.0 Asp-Oδ −0.5

C 0.0 Lys-Nζ 1.0

O −0.5 Pro-N −0.1

N 0.5
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The electric field at each node of the grid is calculated using (4.8).

φi =
∑

j=1

q j

ε
(
ri j

)
ri j

(4.8)

where φi is the electric field strength at node i, q j is the charge on atom j, and ri j is
the distance between i and j.

ε(ri j ) is given by (4.9) [4].

ε(ri j ) =

⎧
⎪⎨

⎪⎩

4 when ri j ≤ 4Å

38ri j − 224 when 4Å < ri j < 8Å

80 when ri, j ≥ 8Å

(4.9)

Considering docking of two molecules, a large molecule ‘A’ and a small molecule
‘B’, charges are assigned to molecule ‘B’ and discretized to get ql,m,n using (4.10).

Bl,m,n = ql,m,n (4.10)

‘A’ is calculated using (4.11).

Al,m,n =
{

φl,m,n grid excluding core,

0 inside core
(4.11)

The electrostatic complementarity score is calculated using (4.12).

Cα,β,γ =
N∑

l=1

N∑

m=1

N∑

n=1

Al,m,n Bl−α,m−β,n−γ (4.12)

Fourier transform is used to reduce the time complexity, and hence to do faster
computation. Similar to shape complementarity, score calculation following (4.13)
and (4.14) are used.

FFT(C) = FFT∗(A) ∗ FFT(B) (4.13)

C = IFFT[FFT(C)] (4.14)

where FFT∗(A) is the FFT of the complex conjugate of matrix ‘A’. The electrostatic
score is used as a binary filter and the orientations with positive scores are rejected
even if they have good shape complementarity score as they are not favorable.
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4.2 Profiling Results

We took an open-source implementation of rigid-body docking called FTDock [5].
The application was written inC language.We used VTune [6] to profile the FTDock
application, running the docking application for different ligand–protein combina-
tions. Table4.2 shows the profiling results of FTDock application averaged over
10 protein–ligand pairs with grid sizes varying between 128 and 232 and with 12◦
angle step for rotation. The application was executed on a PC with Intel Core 2 duo
E4700, 2.6GHz processor with 4GB RAM. The forward FFT and inverse FFT
take 94.17% of the total time after removing the overhead due to the profiling tool.
The discretise function took 2.81% and electric field calculation 2.41% of the total
execution time.

4.2.1 Need to Speedup

The evaluation of FFT is compute intensive as it contains floating-point multiplica-
tions. The FTDock application has to do 3D FFT for each orientation of the smaller
molecule followed by IFFT to get the score. This process takes considerable time
to execute on CPU, and hence there is need for accelerating the FFT application.
For example, the FFT and IFFT evaluation in docking of barnase (1a2p) and barstar
(1a19) with grid size 232 ∗ 232 ∗ 232 took 17h on a PC with Intel Core 2 duo
E4700, 2.6GHz processor with 4GB RAM. Calculations are independent for each
rotation, so thread-level parallelism can be extracted to get speedup in software
implementation.

Table 4.2 Profiling results of FTDock application averaged over 10 protein–ligand pairs with
various grid sizes

Function Total execution time in % Normalized execution time
removing VTune overhead

Forward FFT 45.44 47.22

Inverse FFT 45.18 46.95

Discretize structure 2.69 2.81

Electric field 2.32 2.41

Electric point charge 0.45 0.47

Rotate structure 0 0

FFT create plan 0.01 0.01

_mcount(VTune Overhead) 3.91 –
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4.2.2 Earlier Attempts to Speedup

Recently, many researchers have reported accelerator implementations for bioinfor-
matics applications [7, 8]. Bharat and Herbordt [9], Sukhwani and Herbordt [10]
have studied the acceleration of PIPER protein docking application using FPGAs
and GPUs. PIPER docking requires a computation of a 3D correlation function. In
order to accelerate the correlation computations in software implementations, fast
fourier transform (FFT) is used. The code was modified for FPGA and direct corre-
lation functions were used instead of FFT computations. GPU implementation with
the modified code with only the correlation function gave lower speed when com-
pared to FFT-based implementation. This was because the GPUs perform well for
large number of floating-point computations. Even the multicore performance was
better for FFT-based code. Harald Servat et al. have ported FTDock application on
CELL-BE architecture [11].

4.3 Choice of Single Precision

The original code of FTDock uses FFTW library, which uses double precision as
default [12]. Double-precision floating-point arithmetic on FPGAs clearly consumes
a large amount of resources thus limiting the achievable parallelism under resource
constraints. The output of FTDock is a selection of first 10,000 orientations of ligand
arranged in the decreasing order of the shape complementarity score. The selection
of actual conformations with high scores is important whereas the actual value of
the score calculated is not significant. Given this property of the application, we ran
several experiments to determine whether reduced precision produces acceptable
results.

Table4.3 shows the results containing the orientations selected in double precision
andmissing in single precision. Four pairs of different proteins were chosen. FTDock
was run with both double-precision and single-precision arithmetic. The first “n”
best confirmations were chosen in both cases and compared. Wherever there was
a difference it was noted down. Column 1 in the Table4.3 includes the values of
“n” whereas the other column indicates the difference in case of different proteins.
Note a zero difference implies no loss due to single-precision arithmetic. From the
results, we can see that the ligand orientations which were selected using double
precision and which were not selected during the single-precision run were the ones
with very low shape complementarity score. This is because they appear only when
we choose 10,000 shapes. The implication is that the results would not vary much by
using single-precision floating-point arithmetic for calculating the FFTs instead of
double precision. The fact that reduced precision does not impact the quality of result
allows us to exploit parallelism to build a hardware accelerator for the application
using single-precisionfloating-point arithmetic. This is becausewith single-precision
arithmetic, current FPGAdevices provide adequate resources to support large number
of concurrent computation.
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Table 4.3 Results of mismatches between single-precision and double-precision floating-point
arithmetic selection

Selection range 2ka-5pti 1tgn-4pti 2ptn-6pti 2jel-1poh

0–100 0 0 0 0

101–200 0 0 0 0

201–500 0 0 0 0

501–700 0 0 0 0

701–1000 0 0 0 0

1001–2000 0 0 2 0

2001–5000 7 4 7 7

5001–7000 9 4 10 6

7001–9000 10 6 10 9

9001–10,000 221 214 184 192

4.4 FPGA Resource Mapping

The 3D-FFT of the rotated and discretized smaller molecule has to bemultiplied with
the complex conjugate of the 3D-FFT of the larger molecule. Complex conjugate of
the FFT is done only once so we chose to do it on the host PC. The multiplication
of the FFT results is done on the host PC as we wanted to utilize most of the FPGA
resources for the hardware acceleration of the part of the software code which was
taking more time to execute.

As it is evident from the profiling data, the FFT computation is the most compute-
intensive portion of the application. Hence, we decided to implement this in hardware
in the design that we now describe.

We consider the accelerator setup where, a board has an FPGA which gets data
from host PC through PCIe bus. For estimating the speedup for FTDock, we choose
four different Xilinx FPGAs, and calculate the speedup for each of the FPGAs. The
Table4.4 contains the resources available in each of the FPGAs.

An efficient way to compute DFT is by using Fast Fourier Transform which has
a computational complexity of O(N log N). An N point 3D-DFT is given by (4.15).

F(n1, n2, n3) =
N3−1∑

k3=0

N2−1∑

k2=0

N1−1∑

k1=0

f (k1, k2, k3)e
ik1w1eik2w2eik3w3 (4.15)

Table 4.4 FPGA resources [13]

FPGA DSP 48E1 slices 18kb block RAMs

XC6VSX475T 2016 2128

XC6VSX315T 1344 1408

XC6VHX565T 864 1824

XC6VLX75T 288 312
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Fig. 4.4 3D-FFT calculation using 1D-FFT

where w1 = 2π n1/N1, w2 = 2π n2/N2 and w3 = 2π n3/N3. 3D-FFTs are cal-
culated using 1D-FFT with some variants of Cooley Tukey algorithm [14]. Single-
dimension Fourier transform in each of the three dimensions of the 3Dmatrix is used
to calculate 3D-FFT as shown in Fig. 4.4.

We use simple Algorithm 4.1 to calculate the 3D-FFT.

In the algorithm, ‘x’ is the input 3D-matrix. FFT1 and FFT2 are 3D-matrices
which store the intermediate values. The x(:,i,j) returns the array of all values in first
dimension with second dimension ‘i’ and third dimension ‘j’.

We give the performance estimate for implementing this algorithm on FPGA.
For implementing this on FPGA, we chose the following model: PCIe bus transfers
the required data from the CPU for computation and multiple cores compute on the
FPGA concurrently. The bus being a shared resource, we set up a pipeline for data I/O
as described later in Sect. 4.5. 3D-FFT requires two N 3 3D-matrices as input and it
generates a 3Dmatrix as an output. Single-precision arithmetic is used and each data
of matrix is represented by 32 bits (4 Bytes). For N = 256, a total of 2563 ∗ 4Bytes



4.4 FPGA Resource Mapping 49

Fig. 4.5 Mapping FFT cores onto FPGA

= 67,108,864 Bytes ∼68 MB are needed for storing one matrix. As it is not possible
to store whole of the matrix on the FPGA and while performing the calculations, we
have designed a model in which the FPGA computes on the data sent by the host
CPU and sends it back to CPU after computation. The block diagram is as shown in
Fig. 4.5.

We have attempted to accelerate the 3D-FFT part of the FTDock application. The
input/output controller controls the input, and sends the required input data to par-
ticular floating-point FFT core. The FFT values which are computed are transferred
back to CPU. The multiplication of the complex conjugate is done on the CPU. The
same process of transferring data from the CPU to FPGA and transmitting data back
to CPU after computation is repeated for calculating IFFTs. Sorting and selection of
ligand conformations is done on the CPU itself.

Xilinx Core Generator provides 3 types of FFT core implementations for burst
I/O. They are radix-4 burst I/O, radix-2 burst I/O, and radix-2 burst I/O lite.We chose
the burst I/O mode as we wanted to exploit the DMA transfer from host PC to FPGA
through PCIe interface. Table4.5 shows the resources used by each of the cores for
computing a 256-point FFT. The computation time estimate is also provided by the
core generator for running the core at 550MHz [13].
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Table 4.5 FFT core resource utilization estimate [13]

FPGA
resources

Radix-4, Burst I/O Radix-2, Burst I/O Radix-2, Lite I/O

Mode 256 pt FFT 128 pt FFT 256 pt FFT 128 pt FFT 256 pt FFT 128 pt FFT

DSP slices 40 40 12 6 6

18 kb block-
RAMs

16 16 8 6 6

Computation
time in µs

2.565 1.402 4.045 2.036 5.726 2.729

Table 4.6 Number of cores that can be instantiated

FPGA Radix-4 Radix-2 Radix-2 Lite

XC6VSX475T 45 151 302

XC6VSX315T 30 100 201

XC6VHX565T 19 64 129

XC6VLX75T 6 21 43

Table4.6 shows number of cores which can be instantiated assuming 90% of DSP
slices and Block RAMs are available for mapping these cores.

We use the instantiation of the cores to estimate the performance of FPGA-based
acceleration.

4.5 Estimation Results

In order to use a pipelined model with as few stalls as possible, we have used the
timing model in which the input data is sent from the host in burst mode to each of
the cores. The computing cores start computing as soon as they have received their
respective data. The data is transmitted to the host PC as soon as the computation is
over. There can be two cases,

1. (Nc − 1) * Tb < Tcomp

2. (Nc − 1) * Tb > Tcomp

where

Tb = Ti = To is the time taken to transfer required data for one core from host PC to
FPGA board
(Ti ) or in the reverse direction (To). The transfer uses the PCIe bus interface in DMA
mode.
Tbi = Tb is the time taken to transfer the required data for ith core.
Tcomp is the time taken by one core to compute on an input data set,
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Fig. 4.6 Timing diagram for case 1: (Nc − 1) * Tb < Tcomp

Fig. 4.7 Timing diagram for case 2: (Nc − 1) * Tb > Tcomp

Tci = Tcomp is the time taken for computation on ‘ith’core,
and Nc is the number of cores that are instantiated.

The timing diagram for Nc = 4 in both the cases are shown in Figs. 4.6 and 4.7.
Clearly, the two cases correspond to the shared resource for being a bottleneck or
otherwise. This can be extended to any number of cores.

Taking PCIe bandwidth to be 1GBps for data transfer between host CPU and
FPGA board, the total time for execution of one ‘n’ point FFT can be given by
(4.16).

Total Time
(n point 3D-FFT)

=
{

� k
Nc

� ∗ [
Nc ∗ Tb + Tcomp + Tb

]
when n ∗ Tb < Tcomp,

� k
Nc

� ∗ [
Nc ∗ Tb ∗ 2

]
when n ∗ Tb > Tcomp

(4.16)

where k is the total number of ‘n’ point FFT required and Nc is the number of cores.
The Tb = 1024 ∗ 10−9 for 256-point 3D-FFT, and 512 ∗ 10−9 for 128-point FFT,

which is calculated using the PCIe bandwidth.
Based on (4.16), we estimate the time for calculating one 256-point FFT for each

FPGA. The results are given in Table4.7. The overall speedup is calculated by (4.17),

maximum speedup = p

1 + f · (p − 1)
(4.17)

where p is the speedup of part of the code that is accelerated, which in our case
is 3D-FFT and f (0 < f < 1) is the fraction of time spent in the part that was not
improved. In our implementation, p is the speedup in 3D-FFT calculation, i.e., time
taken in software divided by the time taken by the FPGA hardware. The fraction of
code which is not accelerated is 0.0583 (5.83%). The results containing estimated
overall speedup of FTDock application are tabulated in Table4.8. The speedup using
different FPGA devices is plotted in Fig. 4.8. From the graph, we can see that as the
number of cores that can be instantiated increases, the speedup increases.
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Fig. 4.8 Plot of speedup for different FPGA devices

Table 4.8 Overall speedup achieved using FPGA-based acceleration compared to software

FPGA Radix 4, Burst I/O Radix 2, Burst I/O Radix 2 Lite, Burst I/O

– 256 pt FFT 128 pt FFT 256 pt FFT 128 pt FFT 256 pt FFT 128 pt FFT

XC6VSX475T 6.24× 12x 6.4× 12.2× 6.4× 12.2×
XC6VSX315T 6.1× 11.9× 6.4× 12.2× 6.4× 12.2×
XCVHX565T 5.9× 11.6× 6.2× 12× 6.3× 12.2×
XC6VLX75T 4.8× 10.4× 5.7× 11.5× 6× 11.8×

Results show speedup of around 6× for 256-point FFT and 12× for 128-point
FFT using single FPGA device.

From the results, we estimate a maximum speedup of 6.4× for 256-point 3D-FFT
and 12.2× for 128-point 3D-FFT, when compared to software application run on
a desktop PC with Intel Core 2 duo E4700, 2.6GHz processor with 4GB RAM.
The speedups are less in 256-point FFT when compared to 128-point FFT because
the data required by 256-point FFT is more and hence Tb is high, which is the
data transmission time. Note that the results use a single FPGA device and it is not
uncommon to have accelerator boards with 16 or more devices.

4.6 Summary

In this chapter, we discussed FPGA-based acceleration of protein docking applica-
tion. We profiled the application and found that 3D-FFT was taking most of the time.
The change in quality of the output by use of single precision was analyzed. FPGA
implementation of the 3D-FFT algorithm was done. We developed an analytical
model to predict the speedups. Estimating performance before implementation will
help the designer take early decisions in the design cycle. This will not only help in
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choosing the right FPGA but also help in design for better performance. We illus-
trate this in the next chapter by accelerating genome assembly, which is yet another
commonly used bioinformatics application.
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Chapter 5
FPGA-Based Acceleration of De Novo
Genome Assembly

Abstract De novo Assembly is a method in which the genome is constructed using
the reads without using reference sequence. It is the only way to construct new
genomes. This method is also used when reference genome is available because the
construction is unbiased. The genome assembly involves large amounts of data and
string comparison andhence takes significant time to execute. In this chapter,we show
achieved speedups over software implementations using FPGA-based accelerators.

5.1 Application

De novo assembly can be divided into three categories; Greedy, overlap layout con-
sensus (OLC), and de Bruijn graph-based assemblers. The softwares like PCAP [1]
and TIGER [2] that use greedy approaches make use of the overlap information for
doing the assembly. In the greedy method, the pairwise alignment of all reads is done
and the reads with the largest overlap is merged. This process is repeated till a single
lengthy sequence is obtained.

The OLC method is a graph-based method where an overlap graph is constructed
from the reads. Some of the software assemblers based on OLC are Edena [3] and
CABOG [4]. The reads become the node and edges show the overlap information.
The nodes are placed in the form of a graph. Multiple sequence alignment (MSA) is
donewith the reads havingmore than two edges. Based on this, consensus sequence is
constructed and sequencing errors are removed. A “Hamiltonian path” (path which
visits every node exactly once) in the graph is used to construct the contiguous
sequences (contigs). Later, the whole genome is constructed using these contigs.

Figure5.1 shows an example for assembly using OLC method. A graph is con-
structed with the reads as the nodes and the overlap region as edges. For example,
ATCGGTCGAT has an edge to node GTCGATCAGT, since they overlap. After con-
struction of the whole graph, Hamiltonian path (path which connects all nodes) has to
be found to construct the genome. Whenever there are more paths available between
two nodes, MSA is carried out to remove the errors. Multiple sequences are arranged
in a manner where there is maximum overlap between the sequences. In the figure,

© Springer Science+Business Media Singapore 2016
B.S.C. Varma et al., Architecture Exploration of FPGA Based Accelerators
for BioInformatics Applications, Springer Series in Advanced
Microelectronics 55, DOI 10.1007/978-981-10-0591-6_5
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Fig. 5.1 Example showing OLC-based assembly

there are three paths between GTCGATCAGT and AAGTGATCGT. A consensus is
reached after MSA is done by looking at the majority occurrence. In the figure, “T”
is an error and the consensus sequence is found to be TCAGTCTGAAG.

The de Bruijn graph assembly also uses a graph where the nodes are
k-mers. A “k-mer” is a sequence of “k” base pairs. Some of the popular software
assemblers based on de Bruijn graph are PASHA [5], Velvet [6] and Euler [7]. All the
reads are broken into respective k-mers, i.e., all substrings of length “k.” A graph is
constructed with (k −1)-mers as nodes and the k-mers as edges. This graph contains
all the overlap information contained in the reads for a particular k-mer length. Due
to errors in the reads, there can be a chain of nodes that are disconnected, i.e., they
do not converge into the graph. These are called “tips”. The errors can also cause the
graph to have redundant paths that have same starting and ending point, i.e., the paths
converge back into the graph. These are called “bubbles”. These tips and the bubbles
are removed using heuristics and sometimes with sequence comparisons. “Euler
path” (path which visits every edge exactly once) is used in this de Bruijn graph to
construct the contigs, which in turn is used for constructing the whole genome. The
de Bruijn graph consists of k-mers and since the number of k-mers in a genome is
large, the graph is also large. Since there is a need to store these k-mers in RAM for
constructing the graph, the softwares use large amounts of RAM (more than 150GB
for human genome).
The de novo genome construction from NGS data is complex due to the following
reasons:

1. A very large amount of data has to be processed. Most of the algorithms need
processors with large amount of RAM for processing and storing the data. If the
RAM usage has to be reduced, data partitioning has to be done to keep the “data
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of interest” closer to the processor in the memory hierarchy. This process would
involve swapping of data across the memory hierarchy and thus lead to increase
in execution time.

2. There are some common sequences in the genome called repeats. Identifying the
reads which form these repeats is nontrivial. Some plant genomes include more
than 80% of repeat sequences.

3. The sequencing machine has a constraint on length of reads. If the read length is
less than repeat it is almost impossible to detect which portion of the genome the
read came from.

4. The data generated by the sequencing machines are not fully accurate and contain
errors. The genome constructed may be erroneous if the programs do not take
error correction into consideration.

The choice of assembly software is mainly dominated by the quality of assem-
bly, speed of assembly and the RAM needed for the execution. Many techniques
are used for error correction and improving the quality of assembly [8, 9]. Con-
sidering speed as the criteria, graph-based assemblers are preferred over greedy
assemblers. In the graph-based assemblers, de Bruijn graph-based assemblers have
becomemore popular as they are faster than OLC-based assemblers. This is because,
finding Hamiltonian path (path which visits every node exactly once) in a directed
graph in OLC-based assemblers is a NP hard problem, while finding the Euler path
is easier (solvable in polynomial time) [10]. Also, MSA of the reads used in OLC
method for removing errors is both compute intensive and memory intensive when
compared to the techniques used in de Bruijn graph-based assemblers.

5.1.1 Related Work with FPGA-Based Acceleration

Several groups have attempted to accelerate NGS short read mapping using FPGAs,
where the genome is constructed by mapping the short reads to an already existing
genome. Tang et al. [11] have accelerated short read mapping and achieved 42×
speedup over software PerM [12]. Olson et al. [13] has also shown acceleration
of short read mapping on FPGA. The authors compare their results with BFAST
software [14] and show 250× improvement and 31× when compared to Bowtie
[15]. Fernandez et al. [16] and Knodel [17] have also accelerated NGS short read
mapping. The Convey Computer firm has developed the Convey Graph Constructor
(CGC), which use FPGAs to accelerate de novo assembly [18]. They show speedups
of 2.2× to 8.4×. We attempt to accelerate de novo genome assembly using FPGAs.
As it is not fair to compare mapping-based assembly with de novo assembly, as
both are different and have their own advantages and disadvantages, we compare our
hardware implementation with existing novo software-based implementation.



58 5 FPGA-Based Acceleration of De Novo Genome Assembly

5.2 Approach

We chose to accelerate de Bruijn graph-based assembly, as they take less amount of
time to execute when compared to OLC-based assemblers. We use the fact that there
is a lot of redundancy in short read sequencing. Landel and Waterman [19] describe
the use of redundancy for getting good quality assembly. This redundancy helps in
providing coverage as well as eliminating errors encountered during sequencing of
these short reads.

De Bruijn graph-based software assemblers takes several GBs of RAM space
while executing [20]. Efficient implementation of de Bruijn graph-based assemblers
on an FPGA is difficult due to the memory resource constraints in current FPGAs.
We model a hybrid approach where we implement a part of OLC-based assemblers
on FPGA to remove the redundancy present in the reads. We run the de Bruijn graph-
based assembler in software on the reduced set of reads from the FPGA. The key
innovation is to use a (parallel) hardware implementation to remove the “redundancy”
in the input data and use the state-of-the-art highly computationally intensive de
Bruijn graph-based Velvet software [6] to build the consensus sequence. We choose
to accelerate Velvet software since it is the most commonly used de novo genome
assembly software and it takes significant amount of time to execute on general
purpose processors. One of the features which was needed by our approach was
error correcting feature included in the software package and since it was available
in Velvet, we chose to use it.

A high-level design of our approach is shown in Fig. 5.2. The reads are passed
through Redundancy Remover Unit (RRU) implemented in FPGA, which acts as
preprocessor. The RRU is constructed using processing elements connected in series.
All the processing elements form a pipelined structure and hence execute parallely.
Each of the processing elements stores a sequence. Reads are passed through each
of the processing element. The processing element checks for overlap region at its
ends and if the overlap region is greater than a threshold value, it is extended. These
extended sequences form the intermediate contigs which are given to Velvet for
constructing the final contigs.

Fig. 5.2 Velvet flow and
FPGA-based approaches. In
our approach, we generate
intermediate contigs which
are given to Velvet for
further processing

(a)

(b)
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This approach allows us to effectively use the FPGA resources for removing
redundancy in the reads.

5.2.1 Algorithm

The main thrust in our approach is to find the overlap region between reads and store
the overlap region only once. This can be done using a greedy approach. A read
from the read set is picked which is called “starter” sequence. The starter sequence
is checked for extension with the rest of the reads in read set. This process has to be
repeated until the starter does not extend, meanwhile removing the reads from read
set which extend the starter. After many such iterations, we are left with a reduced
read set and a extended starter. This extended starterwhich cannot be further extended
is stored as an “intermediate contig”. This process has to be repeated by picking a
read from the remaining read set, so that we store the overlap information only once.
After checking with all the reads, if it does not extend, it can be made an intermediate
contig. If it gets extended, the read causing the extension is removed. An example
of a single contig construction is shown in Fig. 5.3. In this example, the read 5 is
made a starter. The extension in each round is shown. During the first round, read
number 4 and 6 extend the starter. Similarly in round 2, reads 3 and 7 extend the
starter. In round 3, all the reads are used up for extensions and the particular contig is
constructed. For this ordering of reads and choice of starter, 3 rounds were required
for the construction of contig. We use this idea for constructing intermediate contigs.

To implement this in parallel, we can start by picking a small subset of reads
(multiple starters) and start comparing and checking if they can be extended by the
reads left in the remaining read set. After single iteration, the starters which did not
get extended can be removed and put in intermediate-contigs set, as there is no chance
for them to get extended in further iterations. The removed starters are replaced with
new reads from the remaining read set for next iteration.

As we do not consider error checking while extending, we call the contigs gen-
erated from our approach as “intermediate contigs,” which can be further processed
by other tools like Velvet. The overall flow diagram is as shown in Fig. 5.4. This
approach reduces the size of the input to the Velvet software, as shown in Fig. 5.5,
and thereby giving speedups compared to software. There may also be reduction in
the RAM usage due to smaller input file.

Velvet is a de Bruijn-based graph assembler. As explained in Sect. 5.1, the k-mers
are used to construct the de Bruijn graph. In Fig. 5.5, an example construction of a de
Bruijn graph is shownwith k-mer size of 5. The top part of the figure shows the velvet
flow and the bottom half shows how the same de Bruijn graph is obtained using the
FPGA-based approach. The Velvet breaks the reads into their respective k-mers. For
example, the first read shown in the figure TCATGTAAG is broken into TCATG,
CATGT, ATGTA, TGTAA, and GTAAG. De Bruijn graph is constructed using a
combined set of all the k-mers obtained from whole of the read set as shown in the
figure. In the FPGA-based approach, the intermediate contigs become the input to
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Fig. 5.3 Example showing the construction of contig using our approach. In each round starter is
extended. Contig is constructed from the reads in 3 rounds

velvet software which constructs the de Bruijn graph from the k-mers obtained from
the intermediate contigs. The figure shows that the same de Bruijn graph is obtained
as the end result using both software only approach and FPGA + software-based
approach. Due to repeated occurrences of k-mers, the graphs thus constructed using
these two methods may not be identical. Quality of assembly has been studied using
these two approaches, which is explained in the results section.
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Fig. 5.4 Software flow for estimation. Mapsembler was used for feasibility test and estimation

To study the benefits of our approach, we used an open source software known as
Mapsembler [21], which does targeted assembly. It takes NGS raw reads and a set
of input sequences (starters). The software determines if the starter is read coherent,
i.e., starter is a part of the original sequence. The neighborhood of the starter is given
as output if the starter is read coherent.
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Fig. 5.5 FPGA-based de novo assembly

The algorithm is described in Algorithm 5.1. All the k-mers in all of the starters
are indexed and stored in a hash table “I.” The hash table consists of starter number
and the corresponding position of the k-mer in that particular starter. A read is taken
from the NGS read set and the respective k-mers are searched in the hash table. If
the k-mer is already hashed, the corresponding starters are tried for extension with
the reads.

This high-level model based on Mapsembler was used to study its effectiveness
in removing redundancy. This model was also used for conducting experiments with
Velvet software on various data sets. From these experiments, we verified that the
time taken by Velvet software was dependent on the input file size. Removing the
redundancy by our approach did not cause significant loss in the quality of output.
We also studied the quality by varying the mismatches allowed during extension.
Even though the software model was essentially done to study the initial benefits of
our approach, we would also like to mention here that this approach takes very long
time to execute, as the reads are compared serially with the starters. In fact, the time
taken on a dual core desktop computer is more than the Velvet software time in most
of the cases.

5.2.2 Algorithm to Architecture

To take advantage of the FPGA architecture we do a streaming designwhere process-
ing elements are connected in series. Each of the processing elements (PE) stores a
sequence called starter. The PEs are connected in a series. “N” starters in the cor-
responding “N” processing elements are populated with “N” random reads. A read
from remaining read set is streamed through the PEs. In each PE, the read is checked
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Algorithm 5.1 Redundancy removal using Mapsembler
1: procedure RruMapsembler(Read-set R)
2: pick N random reads and store as starter s ∈ S
3: delete these reads f rom R
4: for each starter s ∈ S do
5: index all k-mers of s in index-table I
6: starter → extended Flag = 0
7: end for
8: if |R| �= ∅ then
9: for each read r ∈ R do
10: for each k-mer k in r do
11: if k indexed in I then
12: if r extends corresponding s then
13: s = extended(s)
14: set starter → extended Flag = 1
15: delete r f rom R
16: end if
17: end if
18: end for
19: end for
20: for each starter s ∈ S do
21: if starter → extended Flag = 0 then
22: store s as intermediate contig in I C
23: replace s wi th random read r ∈ R
24: else
25: starter → extended Flag = 0
26: end if
27: end for
28: end if
29: store all starters to I C
30: Return I C
31: end procedure

if it can extend the starter. If extended, the starter is updated with the extended starter.
This process is continued till all the reads are exhausted. We use the term “round”
frequently in the rest of the chapters which means that all the reads from the read set
are compared once with current set of starters and tried for extensions. After each
round, the starters which are not extended are replaced with new random reads from
the remaining read set. These nonextended starters of the current round are stored
in an output file. This process removes redundancy in the reads. The redundancy
reduction process is repeated several times till there are no more reads. The remain-
ing reads along with all the nonextending starters from previous rounds constitute
the Intermediate Reads. These intermediate reads are stored in an output file. The
intermediate reads are less in number and longer in length. This output file is given
as input to Velvet software for removing errors and generating contigs.

In order to get better performance, we do the hardware implementation of the
redundancy removal unit using FPGAs. The proposed hardware model differs sig-
nificantly form the software model. The hash-based searching of k-mers in the
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software model is not implemented in this hardware model due to memory resource
constraints. The reads are compared with the starter ends and tried for extension. In
each cycle, the read is shifted and checked if it can extend the starter.

For example:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Cycle1

Starter − ACT GT CGT GT CT GC

Read − T GT CGT GT CT GCGC

Cycle4

Starter − ACT GT CGT GT CT GC

Shi f ted Read − T CGT GT CT GCGCT G

Extd.Starter − ACT GT CGT GT CT GCGCT G

In this example, the starter gets extended after four cycles, where a perfect match is
found after shifting the read by 4 bps.

The extension phase is expensive as it is a long process. To avoid this long delay
in the extender, we add a filter which eliminates reads with no probable extensions.
The number of cycles needed for extension is equivalent to the difference of read
length and k-mer length. From the software implementation, it is observed that for a
single round, the number of reads used for extension are very small when compared to
reads that extend the starters. To take advantage of this feature, we propose a prefilter
block. The prefilter is added before the extension phase. The prefilter compares the
signature of the reads with the signature of the starter. This signature is called the
“read vector” and is constructed by encoding the 4-mers in binary format. 4-mer
was chosen for signature because the vector width would be 256 corresponding to
44. If we choose a signature with more than 4-mer, then the signature will become
much more lengthy and hence would require large memory for its storage and larger
amount of resources for doing the prefilter.

An example of construction of the read vector is shown in Fig. 5.6. In the example
shown, the read vector for read AAAAAAAGGGGG is “100100...001.” Each bit
represents a particular 4-mer. It is set if the 4-mer exists else it is reset. Only one bit
is stored if there is repetition of the 4-mer. The construction of read vectors has to
be done only once, as it does not change during the whole process of assembly. We
first implemented this in software and found that it was taking significant amount
of time and so we implemented this in hardware. The details of this implementation
are explained in Sect. 5.3.

The processing element consists of the prefilter and the extender part. Each
processing element has to store the starter sequence. As the starter keeps increasing
in length, it becomes difficult to store the whole starter inside the processing element,
due to limited resources available in the FPGA. In order to alleviate this problem, we
decided to store the left end and right end of the starter in the processing element, and
reconstruct the starters in the host. The length of the starter ends stored in process-
ing element is equivalent to the read-length, thus allowing extensions at the ends.
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Fig. 5.6 Example showing construction of read vector

With this approach, the reads which are completely covered by the starter and do not
extend the starter are not eliminated. We observed that this does not cause significant
difference in the speedup. By using this approach, we gain two advantages:

1. The memory resource usage is reduced as we store only the left end and the right
end of the starter.

2. We need not reconstruct the vectors for the starter ends used in the prefilter. This
is because the extension is caused by the read for which read vector is already
available. If starter is extended, the starter end and its corresponding vector are
replaced by the read and its vector. This saves considerable amount of time, as
construction of vectors for each extension would be very expensive, both in terms
of resource usage and execution time.

The clock cycles required by each processing element to process a read varies widely.
The number of cycles is highly dependent on the read which is being processed. Due
to rejection by the prefilter, there could be lot of data generated in very few cycles
for the next processing element, or the next processing element could be waiting
for the extension phase of the processing element. Due to this there is irregularity
in the time which processing element can start processing the reads. To keep the
processing elements busy for most of the time, we have introduced FIFOs in between
the processing elements. As the implementation is done on FPGAs, the BRAMswere
used for the FIFO implementation for effective resource usage.

5.3 Hardware Implementation

The overall block diagram is shown in Fig. 5.7. It shows the FPGA board interface
with the host.We use AlphaData board for hardware implementation [22]. The board
has a PCIe bridge which is used for data transmission between host and vice versa.
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Fig. 5.7 Diagram of FPGA board. The RRU unit is implemented on an FPGA board connected to
host through PCIe interface

Fig. 5.8 Block diagram of hardware implementation [23]

The Memory interface unit connects the onboard memory and the PCIe bridge. In
our design, we use the Memory Interface unit to send data to a “Preprocessor.” From
the preprocessor, a series of Processing Elements (PEs) are connected through a set
of FIFOs. The FIFOs are not shown in Fig. 5.7 for clarity. The last PE is connected to
a “Post Processor” connected back to memory interface unit. The expanded diagram
showing different stages including the FIFOs is shown in Fig. 5.8.

The read set in FASTA input file format is sent from the host to the FPGA board
through PCIe bus. For initializing the starters, we encode the most significant three
bits of the read. The fourth bit is used for marking the read that it has extended as a
starter. In order to reconstruct the starters, the starter and the position of the extension
is sent as output through the FIFOSet. Reconstruction of starters is done in software.
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5.3.1 FASTA File to Bit File Converter

The FASTA to bit converter block reads data from the input buffer and encodes the
base pairs in binary format; ‘A’ as “00,” ‘C’ as “01,” ‘T’ as “10,” and ‘G’ as “11.” It
also generates the read vector. The block diagram is as shown in Fig. 5.9. The FASTA
to bit converter has an input BRAMwhich stores a part of the FASTA file. This block
has two parts: the sequence coder and bit sequence generator which generates the
read vector. The sequence coder reads data from the input FIFO and encodes the base
pairs in binary format and removes the comments. Sequence coder is implemented as
a state machine. The state diagram is shown in Fig. 5.10. The bit sequence generator
is made up of a 256-bit shift register, a 256-bit register, and a control unit as shown in
Fig. 5.11. The two-bit sequence code from the sequence coder unit is pushed into the
shift register by shifting two bits to the left. The first eight bits are taken as an address
to set the bit on the second 256-bit register. This register is read after a single read
is encoded completely, which is known by the “seqValid” signal coming from the
sequence coder unit. Control unit controls the shift operation and generates “FifoWr”
signal for writing the read vector and the read when it is ready.

This binary conversion from ASCII is done only once and the rest of the units use
the binary format for further processing. During the next rounds, this state machine
remains idle and so “mux” and “control” is used for selecting the required FIFO.

Fig. 5.9 FASTA to bit converter
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Fig. 5.10 State diagram for sequence coder

Fig. 5.11 Bit sequence generator

5.3.2 Processing Element Design

The preprocessing block is followed by a series of Processing Elements (PE). The
PE contains two parts: the Prefilter and the Extender as shown in Fig. 5.12. A read
and corresponding read vector is taken from the remaining read set and compared
with the starters for extension. Each processing element stores the information of a
single starter. The starter will be saved as an intermediate contig if it does not extend
in the current round. Due to memory constraints in the FPGA, we store only the right
end and the left end of the string for extension. Each of the starters have two parts:
each of length equivalent to the read length. The left end is called starterLeft and
the right end is called the starterRight. First “n” reads, considering that the reads
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Fig. 5.12 Processing
element

are arranged randomly, are copied to starterLeft and starterRight. Similarly, we store
starterVectorRight and starterVectorLeft used for prefiltering.

5.3.3 Prefilter Design

The prefilter design is shown in Fig. 5.13. In the prefilter, a logical “AND” is done
between read vector and starterVectorLeft and stored in TempL register. Similarly,
logical “AND” is done between read vector and starVectorRight and stored in TempR
register. The one-counter block counts the number of ‘1’s in the TempL and TempR
register. If the number of ‘1’s is greater than a set threshold, the read is passed
to the extender; else, it is passed to the FIFO for the next processing element to
evaluate it. The one-counter block lies in the critical path and hence defines the
clock period of operation. We implemented two versions of the one-counter block:
one using Wallace tree and the second using the carry chain available in the Xilinx
FPGA slices. The Wallace tree is built out of 6:3 compressors as the Xilinx Virtex 6
FPGA has six input LUTs. For the 256-bit implementation, we need a Wallace tree
of 258 bits using the 6:3 compressors. The tree is built in five stages and requires 100
(43 + 24 + 14 + 10 + 9) 6:3 compressors with a carry adder at the final stage. The
second implementation is done by adding each bit using the carry chain available in
the FPGA.This implementation took less time, but slightlymore areawhen compared
to the Wallace tree implementation.
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Fig. 5.13 Prefilter design

5.3.4 Extender Design

The extender design is shown inFig. 5.14.Weuse a “maskL” and “maskR” register for
masking the corresponding bits in the starter after shifting the read. In the beginning,
these registers are initialized with twice read length on the right with ‘1’s and rest of
the bits are set to ‘0.” The following operations are done in the extender:

{
tempL = (starter Le f t AND maskL)XNOR shi f ted Rd L

tempR = (starter Right AND mask R)XNOR shi f ted Rd R.

The corresponding scores, scoreL and scoreR, are calculated from tempL and tempR,
respectively, using modified one-counter. A modified one-counter is needed as we
are encoding the base-pair in two bits. An example is shown in Fig. 5.15. Here, we see
that the total score should be calculated by checking 2 consecutive 1s. For calculating
this, we modify the Wallace tree implemented in prefilter block. The Wallace tree
consists of compressors and since FPGAhas 6 input LUTs, we used 6:3 compressors.
The LUTs store the corresponding outputs. The interconnect tree is built to build the
adder.

In our case, since we need to measure only consecutive 1s, we store the appropri-
ate values in the LUTs of the first stage of the Wallace tree implementation instead
of the sum. For example, we store output as 011 (decimal 3) instead of 100 (dec-
imal 8) for 11 11 11 in the 6:3 compressor LUT. This says that three matches are
found. Similarly, for 01 10 11 output stored in the compressor LUT is 001 and
10 for 11 11 01. So, the sum (score) gives the exact matches of the two sequences.
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Fig. 5.14 Extender design

Fig. 5.15 Example of score calculation in extender. Here score = 11

if((readLength/2)−scoreL) is less than allowed substitutions, the starter is extended
on the left side or if((readLength/2) − scoreR) is less than allowed substitutions,
the starter is extended on the right side. The starterLeft and starterVectorLeft are
replaced by the read and read vector, respectively, if the starter is extended on the
left side. Similarly, starterRight and starterVectorRight are replaced by the read and
read vector respectively, if the starter gets extended on the right side. This step of
counting the number of ‘1’s can be eliminated if the allowed substitution is set to
zero. For this, only an “XOR” operation of between (shifted read “AND” with mask)
and starter has to be done and checked if it is equivalent to zero for extension. This
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saves lots of resources and also from the experiments conducted we found that the
quality of results is better with threshold set to “0.” When the threshold is zero, the
implementation does not need a comparator and hence the resources occupied were
reduced by a considerable amount. If a starter is not extended on either of the two
sides, then shiftedReadL and shiftedReadR are shifted to right and left, respectively,
by two bits as base-pair is encoded with two bits.

The maskL and maskR are changed as follows:
{

maskL = maskL AND (maskL � 2)

mask R = mask R � 2.

This process is repeated till the read is shifted (readLength − k-mer length), as we
do not extend starter if there are less than “k” matches. The reads that do not extend
any of the starters are put in the next FIFOSet for further processing by the next PEs.

5.4 Results and Discussion

Zhang et al. [20] have done a comparison of de novo assembly software approaches.
The authors have provided scripts for generating the read set from the genome.
We used these scripts to generate the read files for E. coli, swinepox, and human
influenza. For evaluating our approach, we generated the single-ended read set with
100× coverage for read-length 36 and 75 and 1% error rate similar to what was
reported by Zhang et al. [20]. For the software only flow time, Velvet software was
run using the read set directly on a desktop computer with Intel (R) Core (TM) 2
Duo CPU E4700 running at 2.60 GHz with 4 GB RAM.

5.4.1 Resource Utilization and Operating Frequency

We have implemented the RRU on FPGA and obtained the clock period and FPGA
resource utilization after running place and route tools provided by Xilinx ISE 14.1
[24]. We use these parameters to estimate the speedups for running the Velvet on the
output of RRU after each round. From place and route tools, the maximum clock
frequency for the whole of the design was found to be 200 MHz. We get better
performance by using multiple clocks. The sequence coder and generate units were
able to run at a maximum frequency of 350MHz on Virtex-6 FPGA. The maximum
frequency of operation for the rest of the units was 200 MHz. The hardware imple-
mentation was done on Alpha-Data board having Xilinx Virtex-6 (XC6VSX475T)
FPGA with speed-grade 1.
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Table 5.1 Resource
utilization

Component Slices BRAM

preprocessor 559 –

In-FIFO 17 32

FIFO-set 244 8

Post-processor 200 –

Out-FIFO 93 15

PCI-interface 2047 15

Others 35 –

PE-RdLen-36 380 –

Threshold-0

PE-RdLen-36 939 –

Theshold-11

PE-RdLen-75 643 –

Theshold-0

PE-RdLen-75 1175 –

Theshold-11

The resource utilization obtained from ISEmodule level utilization, for the differ-
ent units is shown in Table5.1. Here we considered design which does not allow any
substitution. The resources occupied by processing element varies depending on the
read length. When the threshold value of the prefilter is set to “0,” the one-counter is
removed and thus number of slices occupied is significantly reduced. Table5.2 shows
the number of PEs that could be implemented on Xilinx Virtex-6 (XC6VSX475T)
FPGA which has 74,400 slices. This table also shows the estimates of number of
PEs on a larger Xilinx Virtex-7 (XC7V2000T) device which has 305,400 slices, con-
sidering 97% resource utilization. This is actually an underestimate as many slices
from various units get combined during the synthesis flow and more logic can be
realized on the device. The threshold in this table also refers to the prefilter threshold.

Table 5.2 Number of PEs on Xilinx devices

Xilinx Device XC6VSX475T XC7V2000T

PE-RdLen-36 110 467

Threshold-0

PE-RdLen-36 58 247

Threshold-11

PE-RdLen-75 78 330

Threshold-0

PE-RdLen-75 48 206

Threshold-11
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If this prefilter threshold is zero, the resource usage is less and hence the number
of PEs which can be implemented on the device increases. We did experiments and
found that for swinepox, threshold value of 11 gives better reduction. If the threshold
is high many of the reads that can be extended are not sent to the extender and if
reduction is low, many of the reads that do not extend the starter are passed to the
extender. The maximum number of cycles a read spends in a processing element is
equivalent to the length of the read, assuming it has passed the prefilter stage. Using
this parameter, we chose the FIFO depth to be same as the length of the read. Most
of the time, two consecutive reads will not extend the same starter and hence the PEs
are busy most of the time. This was verified using profiling.

Note that for design with larger number of PEs where multiple FPGAs would
be required, we have not considered inter FPGA transfer time in our estimates. We
assumeFPGAs are connected in series and the data is streamed from the host, through
the FPGAs and finally, back to the host.

5.4.2 Speedups over Software

Figure5.16 shows the graphs of the speedups at different rounds for swinepox with
read length 36 using PEs varying from 30 to 3000 and using Velvet software [23].

The graphs showmaximum speedups in the range of 5.2× to 11.9× for swinepox
over Velvet software. We also observe that the speedups reach a maximum and then
start to decrease with increasing number of processing elements. The reason for this
is that the utilization of the PEs goes down after a peak and hence the time for read
and write cycles dominate.

We have considered the worst case time by setting the threshold value for the
prefilter to be zero. Figure5.17 shows the reduction in base pairs after each round
for swinepox genome. It can be observed that the compression saturates after certain
number of rounds. The rate of reduction is higher when more number of PEs are
used since compression is being done at a faster rate.

The reduction in size of the input file in terms of base pairs to Velvet software is
shown in Fig. 5.18. For a larger genome like E. coli, we need to have more process-
ing elements to get significant speedups. The maximum speedups are tabulated in
Table5.3.

The speedups in each case first increases, reaches a peak, and then tapers off.
The initial increase can be attributed to the high reduction of input file size during
the initial rounds. After these initial rounds, the redundancy removal is more limited
and so the time taken by Velvet is almost constant. The FPGA processing time is
incremental in nature and hence goes on increasing after each round. Even though
there is not much redundancy removal during the later rounds, the hardware unit
takes at least as many cycles as the number of reads and writes in each PE.
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Fig. 5.16 Speedups over
Velvet software after each
round for swinepox
read-length 36. a Speedups
30 PE. b Speedups 300 PE.
c Speedups 3000 PE

(a)

(b)

(c)
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Fig. 5.17 Number of base
pairs after each round for
swinepox read-length 36.
a Input Size 30 PE. b Input
Size 300 PE. c Input Size
3000 PE

(a)

(b)

(c)
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Fig. 5.18 Input sizes (bp)
before and after FPGA
processing with threshold 0

Table 5.3 Maximum speedups over Velvet software

Sample Swinepox Swinepox H. Influenza H. Influenza E. coli E. coli

Read-length 75 36 75 36 75 36

PE\Size 30.8 MB 48.4 MB 449 MB 729.7 MB 1.2 GB 2.1 GB

30 PE 3.5× 5.2× 1.1× 1.09× 1.2× 1.09×
300 PE 13× 11.9× 3.2× 3.6× 2.5× 2.1×
1000 PE 6.5× 10.5× 6.8× 6.0× 4.4× 5.02×
3000 PE 4.8× 7× 6.8× 10× 6.5× 9.2×

From these results, we can determine a termination criterion to get maximum
benefits from FPGA processing. For this, we keep track of reduction in the total size
of data set in each round and if this decrease is too little (less than threshold), we
stop further rounds.

5.4.3 Quality

There are many factors which affect the quality of assembly. The quality is depen-
dent on the sequencing machine. After the sequencing, the quality of assembly is
dependent on many parameters that are used in the assembly algorithms. Mostly,
the input parameters to the assembler like k-mer length and number of mismatches
allowed can significantly affect the quality of the output. The most popular metrics
to measure quality are the maximum length of the contigs and the “N50”. N50 is the
minimum length of the contig such that summing up the length of only those contigs
whose length is more than N50 cover 50% of the genome.
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Table 5.4 Quality of assembly

Sample Swinepox 75 E. coli 36

Parameters N-50 Max contig N-50 Max contig

FPGA based\Velvet 119,046 119,046 14,988 100,485

30 PE 119,046 119,046 14,988 100,485

300 PE 102,563 102,566 14,988 100,485

1000 PE 119,046 119,046 15,344 100,485

3000 PE 119,046 119,046 15,351 100,485

The quality of Velvet output using these metrics for different PEs is tabulated in
Table5.4. From the various experiments conducted, we observed that by not allowing
mismatches during extension, there was no (significant) loss in quality of output as
shown in results.

From the results, we find that the speedup is dependent on the nature and size of
input data. For a fixed number of PEs, the speedup first increases and then tapers
down with larger number of rounds as FPGA processing time starts dominating.
Maximum speedup increases with number of PEs and reduces after reaching peak.
We estimate speedups up to 13× using our hybrid approach.

From the results it can be seen that the key factor limiting speedup is the number of
PEs in an FPGA. For larger genomes, more number of PEs will be useful in reducing
the overall execution time. Since rate of compression per round increases with more
number of PEs, this would directly influence the overall speedups. Since we have
done an efficient hardware implementation, the number of PEs can be increased by
usingmulti-FPGA boards. The results usingmulti-FPGA boards for further reducing
the execution time are included in Chap.7.

5.5 Summary

In this chapter, we studied the FPGA acceleration of de novo genome assembly.
We accelerate the application by doing preprocessing of the input using FPGAs.
The speedups are obtained by reduction of the input to the Velvet software. The
intermediate contigs were generated in hardware which was given to software to
remove the errors and construct the contigs. The algorithm modification was done
to do an efficient implementation in FPGAs. Prefilters were used to decrease the
execution time. The effect of the algorithm modification on the quality of output
is analyzed. In the next chapter, we discuss how we adopted our methodology to
further accelerate protein docking and genome assembly using FPGAs with custom-
designed HEBs.

http://dx.doi.org/10.1007/978-981-10-0591-6_7
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Chapter 6
Design of Accelerators with Hard
Embedded Blocks

Abstract In modern FPGAs, the digital circuitry common to many applications are
being embedded as hard embedded blocks to utilize silicon area efficiently. Use of
HEBs improves the overall performance of hardware implemented using FPGA, as
the interconnect delays are also reduced. In this chapter, we discuss how HEBs are
designed using the methodology described in Chap.3. We study the impact of HEBs
on the execution time of the two bioinformatics applications; Protein docking and
Genome assembly. In Chaps. 4 and 5, we had studied the acceleration of these appli-
cations using currently available FPGAs. In this chapter, we discuss the identification
and design of respective HEBs to get performance benefits. We also show how we
can estimate application speedups using these future FPGA fabrics incorporating
these HEBs.

6.1 Acceleration of FTDock Using Hard Embedded Blocks

The FTDock application is a docking application which we intend to accelerate using
HEBs in FPGAs. As discussed in Chap.3, by profiling the application it was found
that the most time consuming kernel in the application is the three-dimensional Fast
Fourier Transform (3D-FFT) calculation. The 3D-FFT is also popularly used inmany
other scientific applications in various domains like image processing, bioinformat-
ics, and molecular dynamics. Typically, 3D-FFT computation takes significant part
of the execution time in many of these applications. Thus, in order to speedup these
applications, it becomes necessary to accelerate 3D-FFT computation. In this section,
we discuss acceleration of 3D-FFT using hard embedded blocks, which in turn can
be used to accelerate the docking application.

6.1.1 Related Work

Roesler and Nelson [13] and Beauchamp et al. [2] have shown area and performance
improvement over fine-grained implementations by including coarse-grainedfloating
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point units in FPGAs. Roesler et al. [13] show 2.2 GFlops can be achieved by imple-
menting embeddedfloating point units inXilinxXC2V6000FPGA.Beauchamp et al.
[2] use VPR tools to evaluate the floating point unit. The authors also propose embed-
ded shifters which are used for doing IEEE-compliant floating point multiplications.
They report 54.2% reduction in area and 33.4% increase in speedupswhen compared
to 18× 18 multipliers which are already available as HEBs.

Flexible embedded floating point unit is proposed by Chong et al. [3]. The authors
report a configurable floating point HEB, which can be used as single precision or
double precision based on the need. Their idea is inspired by shadow circuits by
Jamieson et al. [10]. Since configurable HEBs provide more usability, they can be
used for variety of applications. All these approaches have considered floating point
unit implemented as hard embedded blocks for better performance. They project the
speedup bymapping somebenchmark circuits on the proposed newFPGAcontaining
these HEBs.

Ho et al. [8] report the impact of adding floating point coarse-grained core in
an FPGA. They show 2.5× improvement in operating frequency and 18× benefits
in area. The coarse-grained block consists of floating point multipliers, adders, and
word-blocks. The bus-based interconnect is used to connect these blocks. The bus
can be connected to the fine-grained blocks in the FPGA. The reported parameters
that were varied were the number of floating point units (both adders and multipli-
ers), number of input-output buses, number of feedback paths, bus width, and the
number of such coarse-grained blocks. These parameters were used for DSE. Based
on the applications, these parameters were varied to get an optimal design. The ASIC
synthesis of these blocks is done using Synopsys design compiler using standard cell
libraries. They use VEB method to evaluate the HEBs. They evaluate both single-
and double-precision floating point units as HEBs.

Yu et al. [20] try to identify best combination of floating point adders, multipliers,
and word blocks for embedding them onto FPGAs based on performance and area.
Common subcircuits needed for different applications are implemented as HEBs.
They also evaluate merging of floating point units to get performance benefits. They
employ multiple types of floating point units by forming combinations based on
application characteristics and embed them in FPGAs. They discuss the impact of
routing resources for large HEBs.

We also evaluate performance of hybrid FPGAs but our main goal is to evaluate
a specific HEB as hardware accelerator.

6.1.2 FPGA Resource Mapping

We use the Algorithm 4.1 described in Chap.4 which is based on computing 1D-FFT
to calculate the 3D-FFT. The 1D-FFT is calculated on each of the three dimensions
to get the result.

The input/output controller controls the input and sends the required input data to a
particular floatingpoint FFTcore.TheFFTvalueswhich are computed are transferred

http://dx.doi.org/10.1007/978-981-10-0591-6_4
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back to CPU. The same process of transferring data from the CPU to FPGA and
transmitting data back to CPU after computation can be used for calculating IFFTs.

3D-FFT requires n3 size 3D matrix as input and generates a 3D matrix as an
output. Single-precision floating point arithmetic is used and each data of matrix is
represented by 32 bits (4 Bytes). As it is not possible to store the whole 3D matrix
inside the FPGA for large n (e.g., n = 256, a total of 2563 * 4 Bytes = 67108864
Bytes), we have designed a data usage model that is described now.

CPU transfers the required data for computation to the DRAM. The data required
for calculating 1D-FFT is copied to BRAMs within the FPGA. Multiple cores com-
pute single-dimension FFT on the FPGA concurrently. The computing cores start
computing as soon as BRAMs receive their respective data in full. The data output
is transmitted back to the DRAM as soon as the computation is over.

The timing diagram to calculate the total time for computing the 3D-FFT is shown
in Fig. 6.1. The total time for execution of one n-point 3D-FFT using two-port DRAM
is given by (6.2), where Tb is the time taken to transfer required data for one 1D-FFT
from external memory to BRAM and Tc is the computation time of 1D-FFT. For our
HEB, Tc is given by (6.1), where t is the clock period of the butterfly.

Tc = t (n/2 ∗ log2 n + 7) (6.1)

The total time for 3D-FFT thus obtained is divided by the number of banks on the
onboard memory to get actual computation time, as this unit can be replicated for
each bank of onboard memory.

Ttotal = n ∗ n ∗ 3 ∗ Tb + Tc + Tb (6.2)

Based on (6.2), we estimate the time for calculating N point 3D-FFT for different
FPGA devices with varying resources. This is compared with the time taken for
software executed on desktop PC with Intel Core 2 duo E4700, 2.6GHz processor
with 4GB RAM.

Fig. 6.1 Timing diagram for 3D-FFT
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Fig. 6.2 Butterfly design

6.1.3 Hard Embedded Block Design Space Exploration

Methodologies to evaluate heterogeneous embedded blocks in FPGAs have been
reported by two groups as explained in Chap.3. We used VEB methodology as
it allows using proprietary tools for evaluating the new custom-designed fabrics
with existing FPGAs. The HEB design and the application design involving FPGAs
incorporating the HEBs is discussed in the following subsections.

6.1.3.1 Hard Embedded Block Design

Usually, many applications involve calculation of FFTs of different lengths. As but-
terfly is a common module for FFT of any size, we decided to make the butterfly
computation as a HEB to exploit its generic use. The butterfly design is as shown
in Fig. 6.2. For implementing the butterfly, unlike other implementations reported in
Sect. 6.1.1, we consider the single-precision floating point units in pipelined manner.
The butterfly HEB takes three clock cycles to complete the operation.

Flachs et al. [4] have implemented a floating point arithmetic unit used in their
processor. From their implementation, the maximum clock period for one FPU is
800 MHz. According to ITRS [9], the area of design is halved when a feature size is
scaled by 0.7×. As we do not change the frequency of operation of FPU, we divide
the area by a factor of 4 for scaling the FPU from 90 to 40nm. We use their model
to estimate the frequency and the area of the butterfly unit as this is one of the good
FPU implementations which is highly optimized for processor design. We estimate
that the area occupied by one butterfly HEB unit is 0.815mm2.

http://dx.doi.org/10.1007/978-981-10-0591-6_3
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For VEBmethodology, we need to estimate the area of the HEB in terms of slices.
Nachiket [11] has estimated that the area of Virtex-6 LX760 FPGA having 118,560
slices is 471mm2. The author uses LUT area to estimate the area occupied by slices.
Using this area estimates, we find that the area occupied by one butterfly HEB is
equivalent in area to 210 Virtex-6 slices. Such an equivalence is useful in performing
the trade-off and configurable logic bocks.

6.1.3.2 Application Design Using Hard Embedded Blocks

The FFT is implemented using the butterfly HEB. 1D-FFT design is as shown in
Fig. 6.3. The FFT consists of two dual-port memories connected to the butterfly. The
controller is implemented in a pipelined manner with eight stages. The first stage
is the address generation stage where the BRAM read address is generated. The
next two stages are the read stages where data from BRAM is read. The next three
stages are computation stage followed by two write stages where the computed data
is written back to the BRAM.

Ideally, for fast operation, FFT computation using butterfly requires a quad-port
memory. Since implementation of quad-port memory using distributed RAM is not
area efficient, we decided to use dual-port memory to store the data. This dual-port
memorywas implemented usingBRAMs andwas designed using logic core provided
by Xilinx ISE. In order to compute FFT using dual-port memories, two cycles are
needed for both read as well as write operations. We designed the controller to
generate the required addresses for computing the FFT. Simulation was done using
Modelsim and synthesis and place and route was done using XST to obtain the
minimum clock period. The various parameters like area and the clock period of

Fig. 6.3 1D-FFT design
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core using butterfly HEB when compared with Xilinx core are reported in Table6.1.
We can see that the FFT with butterfly HEB occupies lesser area compared to the
Xilinx core which uses DSPHEB. The number of cycles taken by FFT using butterfly
HEB is less compared to one with Xilinx core. This is in spite of Xilinx core being
a highly optimized implementation.

6.1.4 Results and Discussion

We compare our HEB with the implementations using existing HEB in the devices.
We use Xilinx FFT core 7.1 for comparing this. The FFT core uses DSP slices
which are in fact HEBs already incorporated in the existing devices. As in FFT using
butterfly HEB, here also we use the same model, where data is read from DRAM
to BRAM and the core uses the data in BRAM for the computation. To make our
comparisons realistic, we choose Radix 2 butterfly design provided by core generator
in Xilinx ISE. All speedups reported are with respect to software execution using
highly optimized FFTW [5] libraries run on desktop PCwith Intel Core 2 duo E4700,
2.6GHzprocessorwith 4GBRAM.TheFFTWlibrary is aC subroutine librarywhich
can be used to compute mutidimensional discrete Fourier transform, for both real as
well as complex data.

In order to do design space exploration of the HEBs, we first estimate the number
of FFT cores that can be instantiated for different devices. For the Xilinx core, this
limit could come from one of the three following factors:

• Number of BRAMs available in the device
• Number of DSP units available in the device
• Constraint of logic blocks

For the butterfly HEB, this limit comes either due to number of slices or BRAMs.
In our case, the limit came due to the BRAMs available. The estimated number of
cores for devices for 1024-point and 2048-point FFT are listed in Table6.2.

The number of banks in the available DRAM is also varied to see the effect
of memory bandwidth on the HEBs. Basically, the number of HEBs that can be
effectively used may be constrained by the memory bandwidth. As we consider
existing BRAMs which have fixed maximum frequency of operation, we increase
the bandwidth by increasing the number of DRAM banks. While increasing the
number of butterfly HEBs, we see to it that the area of all the HEBs is not more
than the area of all the DSP units present on the device. Thus for each device, we
have seen that the configurability of FPGA is not compromised. The speedups over
software version using FFTW library for 2048-point 3D-FFT on XC6VSX475T
device is listed in Table6.3 with the number of Xilinx cores equal to number of
HEB cores [17]. It can be seen that as bandwidth increases, the number of cores that
can be instantiated increases and hence the speedup. After reaching a bandwidth of
6 GBps per bank, the number of HEB cores which can be effectively used saturates
due to limited amount of BRAM resources on the FPGA. This causes the speedup
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Table 6.3 Speedups over software for 2048-pt 3D-FFT on XC6VSX475T device

Bandwidth GBps per bank Speedup using butterfly HEB Speedup using Xilinx core
using DSP

9 1953× 1522×
8 1953× 1522×
7 1953× 1522×
6 1854× 1446×
5 1545× 1218×
4 1236× 989×
3 927× 761×
2 618× 533×
1 309× 304×

to saturate. When the bandwidth is 9 GBps per bank, the speedups compared to
software version using butterflyHEBSwas 1953× and usingXilinx corewas 1522×.
The speedups over software version for different FFT lengths are shown in Fig. 6.4.
Here the total combined area of all the Xilinx cores is equivalent to the combined
area of all the HEB cores. It can be observed that with normalized area, our HEBs
give comparatively higher speedup compared to Xilinx core which uses DSP HEB.
For example, for 1024 point 3D-FFT, speedups obtained over software version was
2833× using butterfly HEB and 1031.72× for Xilinx core using DSPs. This was
due to the fact that the number of 1D-FFT cores which could be instantiated on the
fabric with butterfly HEB was 49 while 26 1D-FFT Xilinx cores using DSPs could
be instantiated in the equivalent area.

The implementations reported in Sect. 6.1.1 focused on reducing the critical path
which mostly lies in the HEB. Even though all have reported significant reduction
in area, the importance of the reduction is not shown. But in the case of application
acceleration, area occupied by the resource, along with the critical path becomes an
important factor as the number of units that can be instantiated decides the speedup.
An open source protein docking application FTDock [14] is used as a case study and
is accelerated using the designed FPGA architecture. FTDock application performs
rigid-body docking on two molecules. Profiling was done to identify the kernel. It
was found that the 3D-FFT computations take up 94.1% of the total execution time.
The overall speedup of 17× was obtained using butterfly HEBs when compared to
software only version executed on desktop PC with Intel Core 2 duo E4700, 2.6GHz
processor with 4GB RAM. The speedup is limited to around 17× as the 94.1% of
the application execution time is used by FFTs which is accelerated using FPGA.
Since rest of the application (5.9%) that runs on processor is serial and cannot be
parallelized, we do not expect any changes in speedups even if newer architectures
like Intel I7 having up to 6 cores are used.
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(a) (c)

(d)(b)

Fig. 6.4 Speedups for 3D-FFT with different number of points on XC6VSX475T device. a 32-pt
3D-FFT. b 128-pt 3D-FFT. c 512-pt 3D-FFT. d 1024-pt 3D-FFT

6.2 Acceleration of Genome Assembly Using Hard
Embedded Blocks

In Chap.5, we had discussed a novel method to accelerate de novo assembly using
FPGAs. In this section, we show further speedups by designing HEBs customized to
accelerate de novo assembly using FPGAs. Using the HEBs, we show that speedups
of up to 11× can be obtained using FPGAs containing the HEBs. To the best of our
knowledge, this is the first attempt to accelerate de novo genome assembly using
HEBs in FPGAs.

Since genomics has usage in various fields like personalized drugs,metagenomics,
etc., the usage of custom HEBs can be justified. Also our HEB can be used to find
Hamming distance between two vectors. Hamming distance calculation is commonly
used in digital communication and in many encryption–decryption algorithms [6]. It
very often comes in the critical path of these applications. Using HEBs can reduce
the execution time. CustomHEBs, due to their dedicated application-specific design,
occupy less silicon chip area compared to LUT implementation and hence the FPGA
resources can be used optimally for the rest of the operations.

http://dx.doi.org/10.1007/978-981-10-0591-6_5
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Fig. 6.5 FPGA-based approach to accelerate Velvet

6.2.1 Algorithm—Recap

Wefirst summarize the application described inChap.5. To reduce the execution time
of Velvet software, we generate intermediate contigs using a redundancy removing
unit (RRU) implemented on an FPGA. The block diagram is shown in Fig. 6.5.
These intermediate contigs store the overlap information only once. The intermediate
contigs generated by the FPGA are given to the velvet software to generate the
contigs.

The RRU design consists of processing elements connected in a series. Each
processing element stores a sequence known as starter. The reads are streamed
through each of the starters stored in the PEs to check if they extend the starter.
A read extends a starter on the right if starter’s right end matches with the read’s left
end. Similarly, a read extends the starter on the left if starter’s left end matches with
the right end of the read.

‘N ’ first reads from read set ‘R’ are stored as starters in ‘N ’ processing elements.
The (N+1)th read is checkedwith each starter for extension. If the starter is extended,
the read is marked as extended and discarded. Thus, each read is tried with all the
starters for extension. One such iteration of comparing reads with one set of starters
is termed as a “round”. If the read does not extend any of the starters, it is stored for
comparison for the next round in remaining read set ‘RemR’. The starters which do
not get extended in the current round become the intermediate contigs, as they do
not get extended in further rounds. The starters which became intermediate contigs
are replaced by first few reads of ‘RemR’. The ‘RemR’ is now made new read set
‘R’. This process is repeated with the new read set ‘R’ till the number of reads in the
remaining read set ‘RemR’ is less than “N ,” the number of PEs.

6.2.2 FPGA Resource Mapping

The hardware implementation of the RRU was done on an FPGA board. The algo-
rithm is slightly modified to make it suitable for the hardware implementation. Due
to hardware resource constraints, only the left and right ends of the starter equivalent
to length of reads is stored in the PE. The process of extension is time consuming, as
it involves comparison of read with the starter at each position. To reduce the time,

http://dx.doi.org/10.1007/978-981-10-0591-6_5
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the we have proposed to store a “read vector” with each read in order to quickly
check if there is a possibility of extension by the starter. The main idea is to find
the number of matching 4-mers. If this number is greater than a threshold, the read
is tried for extension. The read vector is a 256-bit vector whose position depicts an
existence of a 4-mer. The starters left vector and starters right vector are stored along
with the starters. A logical ‘AND’ between read vector and starter’s vectors marks
the matching 4 mers. Now the number of matched 4-mers can be found by counting
the number of ‘1’s in the result. This modification is called “pre-filtering” which
saves a lot of time by bypassing the extension process for all but a small number
of starters. The PE design is shown in Fig. 5.12. Each PE consists of a prefilter, an
extension unit, and a control unit. The reads which pass the prefilter are passed to the
extender. In each cycle, the extender shifts the read by one base pair and compares
with the starter. The extender updates the starter if extended, marks the read, and
sends it to the next PE. The control unit activates the FIFO control signals as and
when required. Each PE is preceded by a FIFO to store the intermediate results.
The FIFOs are added to keep the processing elements busy, as the PEs take varying
number of clock cycles to process a single read.

The hardware implementation was done using Xilinx ISE. After synthesis, we
found that the 256-bit 1-counter came in the critical path of the design which
decides the operating frequency. In order to increase the operating frequency, we
have designed a “256-bit 1-counter HEB” to do this operation. The basic function
of 256-bit 1-counter HEB is to add all the bits in the 256-bit vector. To get more
speedups, we have to implement more number of PEs on a single chip. As each PE
is preceded by FIFO in our design, it was important to reduce area occupied by the
FIFOs. We used BRAMs which are popular in current FPGAs as HEBs. The FIFO
controller which was built around the BRAMs also takes significant area and hence
we used the existing FIFO controllers in the Xilinx FPGA to optimize the overall
design both in terms of area and performance.

6.2.3 Hard Embedded Block Design Space Exploration

We use the methodology shown in Fig. 3.2 for design space exploration. The applica-
tion is modified to suit the FPGA accelerator technology. From this modified design,
we do the synthesis using standard FPGA design tools and find the critical path and
resource usage. Using the results of such an analysis, HEB has to be identified. Usu-
ally, the logic which comes under the critical path is made an HEB if the next delay
path is considerably less than the critical path delay. The granularity is either decided
by the number of times the “time critical part” is instantiated in the design in the
case of fine-grained HEB or by using the resource occupancy of the modules in the
design in case of coarse-grained HEB. In our approach, the HEB is designed using
virtual embedded block (VEB) methodology [7]. The application is designed using
the HEBs and the resource usage and critical path are obtained using ISE synthesis
and place and route tools. A high-level implementation mimicking the hardware was
done to identify the speedups.

http://dx.doi.org/10.1007/978-981-10-0591-6_5
http://dx.doi.org/10.1007/978-981-10-0591-6_3
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6.2.3.1 Hard Embedded Block Design

We use VEB methodology for evaluating the 256-bit 1-counter HEB [7]. The VEB
methodology can be used for performance evaluation of future fabrics which contain
many heterogeneous HEBs. ASIC synthesis of the HEB block has to be done using
ASIC synthesis tools. The area and the delay from these tools will be used to model
the dummy block in Xilinx ISE. In VEB methodology, the HEB is introduced as
dummy block in the design. The delay of the dummy block is made equivalent to
the delay of the HEB. For area analysis, the area of the dummy block is designed in
such a way that is equivalent to the area of the HEB. The dummy block is modeled
as a hard macro or a relationally placed macro (RPM) using Xilinx design tools.

The top-level design has to bemodified to infer theseHEBs as components instead
of the logic blocks. This design has to go through synthesis as well as place and
route tools of Xilinx ISE to get the exact operating frequency numbers and the area
estimates. Using the operating frequency, the overall execution time using an FPGA
with such an embedding has to be estimated for different genomes. This can be done
in two ways. In the first method, the VHDL model without HEB can be used for
simulation with different input sets. The VHDL model without the HEB ensures
a functionally correct and working model. This model can be tweaked to extract
the exact number of cycles taken by the FPGA with embedded HEBs. The second
method is to implement a high-level design in software to mimic the hardware. The
simulation time is a crucial factor for studying the effects of such a design, as the
input size is very large (For E. coli bacteria the input size with 100× coverage is
2GB). The simulation time could take up days for analyzing such an embedding.
The VHDL model would take very long time as it is dependent on the simulation
tool on which it is run. The simulation tool overhead is also a matter of concern. The
high-level software model is a faster method to estimate the overall execution time
and we discuss this in the next chapter.

We designed a 256-bit 1-counter HEB for accelerating de novo genome assembly.
The 256-bit 1-counter is a unit which takes a 256-bit vector and gives the number
of ‘1’s in the vector as an output. The adder adds each bit to obtain the number of
‘1’s in the input. For example if the input vector is “00010101” the output is “0011”
(decimal-3) in binary. This 256-bit 1-counter is used in the prefilter section of the
RRU.Many experimentswere carried out to implement an efficient 256-bit 1-counter.
We designed aWallace tree with 6:3 compressors. We chose 6:3 compressors as they
would fit exactly in three 6-input LUTs inside the FPGA. We also implemented
256-bit 1-counter by adders by writing a behavioral code using commonly used
shift-add method. The design which uses a tree-based implementation gave signifi-
cantly better results. The Fig. 6.6 shows the adder tree for 8-bits. For example, at the
bottom level of 8-bit adder, four 2-bit adders are used to add in parallel. Similarly,
outputs are added at the next level in chunks of two till we find the overall sum,
which is the required result.

The adder was designed using VHDL and synthesized using Synopsys Design
Compiler tool [15] using UMC [16] 90nm library. The area of the 256-bit 1-counter
was 11983µm2 and the operating frequency was 185MHz. We scaled this to 40nm,
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Fig. 6.6 Adder design

using ITRS scaling factors, where area is halved for 0.7× scaling in technology for
the same frequency of operation [9]. The area of the 256-bit 1-counter was found to
be equivalent to area of 1 Virtex-6 FPGA slice using the slice area from [11]. In the
VEB design, the HEB has to be represented in terms of slices in an existing FPGA.
A single slice with 256 inputs will need special routing resources. Instead, we have
used the slice area as 6 slices to accommodate 256 inputs. This is an underestimate
as a design using 6 times its area can in fact have better operating frequency.

6.2.3.2 Application Design Using Hard Embedded Blocks

We used Mapsembler [12], an open-source software implemented in C language to
mimic the hardware implementation. Counters were introduced in the model to give
the number of clock cycles taken by the design with HEB for a particular input.
The time taken by the FPGA with HEB as well as the output from the FPGA is
obtained from the high-level model. This output was fed to the Velvet software to
calculate the overall execution time for the sample input. The data transfer delays
were picked from the design on Alphadata board [1]. The overall time taken by the
RRU and Velvet after each round of processing is calculated and compared with the
time taken by Velvet using the unprocessed input. This is because the absence of
such an accelerator would imply that Velvet processes the complete input stream.

6.2.4 Results and Discussion

We have implemented the RRU on Xilinx Virtex-6 SX475T FPGA using the Xilinx
ISE tools [19]. The design was validated on an AlphaData FPGA board with Xilinx
Virtex-6 SX475T FPGA. The design for the 256-bit 1-counter HEB was done using
the VEB methodology using the Xilinx tools. For estimating speedups of fabrics
with HEBs, we use the critical path obtained by the VEB method. It is increasingly
common to see FPGA development boards containing multiple FPGAs. We estimate
the speedups for an FPGA board with 5 such VIrtex-6 FPGAs [18].



6.2 Acceleration of Genome Assembly Using Hard Embedded Blocks 95

The area and the timing results from a single FPGA were used to estimate the
speedups using 5-FPGAboard. The communication overhead due tomultiple FPGAs
has not been considered. We compare the time which Velvet takes without the pre-
processing and compare it with the sum of the time taken by FPGA preprocessing
and the time taken by Velvet to process the “reduced” FPGA output. The software
version was run on a computer with Intel Core2 duo E4700 processor running at
2.6GHz with 4GB RAM and Ubuntu operating system. The reads were generated
synthetically using the scripts provided by Zhang et al. [21]. The results are shown for
Swinepox virus. The reads of length 36 and 75 were generated with 100× coverage.

Table6.4 gives the number of PEs that can be designed on an printed circuit board
with 5 Virtex-6 SX475T FPGAs. Our objective is to see the effect of our HEBs as
well as FIFO controller HEB which exists in modern FPGAs. The number of PEs
which can be put on the board increases as we use HEBs as they take lesser area
compared to the 256-bit 1-counter implementation using logic blocks. The clock
frequency is also considerably increased. The operating frequency increased by a
factor 2, when 256-bit 1-counter HEBs were used. The number of 256-bit 1-counter
HEBs used is twice the number of PEs used as each PE requires two such 256-bit
1-counters. For read length 75, the number of slices used increases and hence the
number of PEs is less when compared to the number of PEs when read length is 36.

The graphs of the speedups using read length 36 is plotted in Fig. 6.7. In this
figure, the reduction in the size of input (base pairs) is also shown. The rate of base
pair reduction with each round decreases as the number of base pairs that get used up
in the extensions are more in the beginning. For example, it can be seen in Fig. 6.7a
that there is reduction from 14 * 106 bp to almost 1 * 106 bp after 10 rounds and
reduces very slowly after that. During the later rounds, only those reads are left which
mostly do not extend any of the starters and become the intermediate contigs.

The FPGA processing time for each round is plotted in Fig. 6.8 for E. coli genome
assembly with read length 36 and 100× coverage containing 0.1% errors. We see
significant reduction in FPGA processing time when HEBs are used. For example, at
the 200th round, we see that the processing time is 375s when neither of the HEBs
were used, where as the time reduced to 150s when both the HEBs were used.

From the graphs it can be observed that the speedups increase when specialized
HEBs are incorporated. For example, it can be observed from Fig. 6.7b, c that the
speedups increase from 9× to 11×. By using the in-built Xilinx FIFO controllers,
the speedup is increased and when 256-bit 1-counter HEBs are used, the speedups
further goes up. This increase in speedups can be attributed to the increase in number
of PEs which can be fitted on the FPGA and the increase in operating frequency,
when HEBs are used. For longer reads, the speedups can be increased by increasing
the number of FPGAs used. Similarly for larger genomes, the number of FPGAs
have to be increased in order to increase the number of PEs used. As the FPGAs
become larger, there will be higher speedups possible due to the FPGA’s capacity to
accommodate more number of PEs.

The Velvet software has not been particularly optimized to execute on a multiple
CPUs (nodes), but as it is implemented using a multi-threaded design, the execution
time can be reduced by running on a multi-core machine. Newer architectures like



96 6 Design of Accelerators with Hard Embedded Blocks

Ta
bl

e
6.

4
A
re
a
an
d
op
er
at
in
g
fr
eq
ue
nc
y
of

th
e
R
R
U

R
ea
d
le
ng

th
1
V
ir
te
x-
6
FP

G
A
(S
X
47
5T

)

W
ith

ou
t2

56
-b
it
1-
co
un
te
r
H
E
B

W
ith

25
6-
bi
t1

-c
ou
nt
er

H
E
B

W
ith

ou
tF

IF
O
-c
on
tr
ol
le
r
H
E
B

W
ith

FI
FO

-c
on

tr
ol
le
r
H
E
B

W
ith

ou
tF

IF
O
-c
on
tr
ol
le
r
H
E
B

W
ith

FI
FO

-c
on

tr
ol
le
r
H
E
B

N
o.

of
PE

s
C
lo
ck

Fr
eq
.

N
o.

of
PE

s
C
lo
ck

Fr
eq
.

N
o.

of
PE

s
C
lo
ck

Fr
eq
.

N
o.

of
PE

s
C
lo
ck

Fr
eq
.

36
60

98
M
H
z

73
98

M
H
z

80
18
5
M
H
z

10
3

18
5
M
H
z

75
50

98
M
H
z

60
98

M
H
z

63
18
5
M
H
z

79
18
5
M
H
z

5-
FP

G
A
bo
ar
d

36
30
0

98
M
H
z

36
5

98
M
H
z

40
0

18
5
M
H
z

51
5

18
5
M
H
z

75
25
0

98
M
H
z

30
0

98
M
H
z

31
5

18
5
M
H
z

39
5

18
5
M
H
z



6.2 Acceleration of Genome Assembly Using Hard Embedded Blocks 97

(a) (b)

(c)

Fig. 6.7 Speedups and number of base pairs after each round for Swinepox read length 36.
a Input size with 256-bit 1-counter HEB and with FIFO controller HEB. b Speedups without
256-bit 1-counter HEB. c Speedups with 256-bit 1-counter HEB and with FIFO controller HEB

Fig. 6.8 FPGA processing
time for each round for
E. coli genome assembly.
Key: a without any HEBs,
b with only FIFO controller
HEBs, c with only 1-counter
HEBs, d with both the HEBs
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Intel I7 have up to 6 cores and this would speed up the execution of Velvet vis-a-vis
processors containing fewer cores. From the results, we can infer that the speedups
are limited by the Velvet software which is used to construct the contigs from the
intermediate contigs. Using efficient hardware design methods, the pre-processing
time in hardware can be reduced, but the speed-ups will still be limited by the Velvet
software needed to construct the contigs. Thuswe expect slight reduction in speedups
on newer platforms with higher number of cores.

6.3 Summary

In this chapter, we showed acceleration of 3D-FFT and Genome assembly by incor-
porating HEBs in FPGAs.

The butterfly unit was implemented as an HEB for the 3D-FFT acceleration.
FFT has critical role in many fields and many applications which use FFTs can be
accelerated using such fabrics. The 256-bit 1-counter HEB can be used inmany other
applications including cryptography and digital communications, where hamming
distance has to be calculated. The 256-bit 1-counter we designed takes a 256-bit
vector, but can easily be configured for using it for larger vector inputs.

The time taken by compute-intensive applications can be reduced significantly by
using FPGA-based accelerators. To evaluate HEBs, simulation models were devel-
oped. Performance estimates using these models were used to design the HEBs. For
protein docking application, analytical models could be easily used for performance
estimates. For de novo genome assembly, the speedups cannot be easily predicted
with analytical models, as the number of “rounds” cannot be predicted for a sample
input. Hence, we used high-level simulation models for performance estimates. As
performance estimates are tightly integrated in our methodology for DSE, we show
that choosing the right parameters at different levels of abstraction helps reduce
the overall time for DSE. We describe the use of high-level models for DSE for
accelerating de novo genome assembly in the next chapter.
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Chapter 7
System-Level Design Space Exploration

Abstract In this chapter, we discuss the design space exploration carried out to
accelerate de novo genome assembly using FPGAs. It is well known that as sys-
tems become more complex, one moves up the abstraction level for design space
exploration through simulation. This is essential for managing complexity. Nor-
mally, higher abstraction levels imply faster and wider design space exploration but
come at the price of lower accuracy. The focus of this chapter is on high-level design
space exploration. The exploration was carried out at three levels. In this chapter,
we propose modeling at three different levels: high-level algorithm model using
‘C’ followed by cycle-accurate model using System-C, and finally RTL component
model using VHDL.We classify the parameters that can be studied using these three
models.

7.1 Introduction

The problem of accelerating applications is challenging as there are a large number
of design choices and each of them have to be evaluated to develop a near-optimal
design. First step is to arrive at a suitable algorithm which is efficient in terms
of complexity. Typically, this translates into minimizing the number of primitive
operations like arithmetic, logical, memory accesses, etc. The other important design
decision is the choice of hardware for accelerating such applications. Many of these
applications are run on general-purpose processors along with some kernels and
interfaces implemented as custom hardware or reconfigurable accelerators. These
accelerators require application-specific coding and thus imply significant investment
of design effort. It is important to analyze the speedups before actually building and
testing them on the actual hardware. A system-level simulation of the platform along
with an accelerator model helps in designing better accelerators.

© Springer Science+Business Media Singapore 2016
B.S.C. Varma et al., Architecture Exploration of FPGA Based Accelerators
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7.2 Design Space Exploration

The main goal of the design space exploration was to accelerate Velvet software,
which takes significant amount of time to execute on general-purpose processors.
Profiling of the Velvet software was carried out and it was found that the compute-
intensive kernels inVelvet software cannot be directly implemented on FPGA. This is
because the hardware resources available even on the largest FPGA are not adequate.
Further, the direct implementationwould require storing of the de Bruijn graphwhich
itself requires large amounts of memory. The next strategy was to investigate if we
could do preprocessing of the reads and then give the output to Velvet software for
constructing the contigs. The contigs can further be used by other software tools
for constructing the genome. To investigate this, we used an existing open-source
targeted assembly software called Mapsembler [7]. The key idea was to use a hybrid
approach based on both OLC method and de Bruijn graph-based de novo genome
assembly. As the reads in the de Bruijn graph method are broken into respective
k-mers before processing, storing the read-only once would reduce the input size for
Velvet processing. The various parameters that were explored using the three models
are shown in Fig. 7.1. The C model was essentially used to test the feasibility. We
then implemented the VHDL model of the core to get the area and delay (clock
period as well as number of clock cycles) required for performance estimation.

Fig. 7.1 Block diagram
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Table 7.1 Three models: simulation time for E. coli and human influenza genomes

Model\Genome Simulation time

H. Influenza E. coli

C 50s 2.5min

System-C 3h 40min 1h 13min

VHDL 200h 601h

Further, a cycle-accurate System-C model was developed to know the exact number
of processing cycles required as it would translate to possible concurrency-based
resource availability.

The simulation time taken for the three models developed are shown in Table7.1.
Clearly, there is almost two-order increase in speed using a higher abstraction model
vis-a-vis lower level model. The platform used was a CPU with 2GHz Intel Core
i7-3537U processor with Ubuntu 13.04 OS and 8GB RAM. VHDL simulation was
done using ModelSim [1]. The time taken for simulation reported here is for E. coli
genome and human influenza virus genome with read length 36 and for hardware
platform with 250 processing elements (PEs). From the table it can be observed
that VHDL simulations for doing the design space exploration are not feasible. The
genome length of human influenza virus is around 13,588 base pairs and the E. coli
genome length is around 4.6 ∗ 106 base pairs. Note that human genome’s length is
around 3 billion base pairs and clearly larger genomes are not feasible to use VHDL
simulations for design space explorations. Even though some of the parameters like
clock period and the resources utilized can be obtained from VHDL model, whole
system simulation is not feasible. C-model can be used for very-high- level design-
space exploration to design the major architecture features. System-C model can be
used for complete system simulation and thus can be used to decide multiple design
parameters.

7.2.1 C-Implementation

The Mapsembler software was used as a C-model to do the design space exploration
at algorithmic level. TheMapsembler does targeted assembly, i.e., it will try to extend
a smaller set of sequences known as “starters” with sequences in a larger “read-set.”
For doing assembly using Mapsembler, we take the first ‘N’ reads from the read set
and seed them as starters. The rest of the reads in the read set are compared with
the starters one by one for extension. We precisely repeat the core of the algorithm
presented in Chap.5.

In order to check if reads have completely extended the starters, multiple iteration
of comparison of the reads with one set of starters has to be done. The reads which
extend the starters are removed from the read set as their information is captured

http://dx.doi.org/10.1007/978-981-10-0591-6_5
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Fig. 7.2 Read vector
construction

in the starter. The starters that do not extend in the current round, will not extend
in further rounds and hence have to removed. These removed starters are stored
in the output file known as “intermediate contigs.” At the end of each round, the
nonextended starters are removed and replaced with a new set of reads as starters.
The iterations are repeated till the number of reads from the read set is less than the
number of starters. In Mapsembler, to fasten this process, the k-mers of the starters
are indexed in a hash table. Extension is carried out only if any of the k-mers present
in the read is already available in the hash table. The intermediate contigs generated
after multiple iterations of extending the starters. The overall block diagram of our
approach is shown in Fig. 5.2. The preprocessing of RRU in the FPGA as discussed
in Chap.5 and the intermediate contigs generated are given to host where Velvet
software is run for generating the contigs.

The main advantages of the C-model is that not only it is fast but also it is easy
to make changes without much debugging. The key elements which could be tested
using this model were:

I Check the feasibility of the algorithm;
II Quality of the output;
III Performance numbers; and
IV Modification to the algorithm.

Starting from this model, the potential benefit of hardware implementation was
assessed. The resources needed for storing the starters was estimated. We realized
that there would be a memory resource constraint for storing the starters. Based on
such an analysis, it was decided to store only the left and the right part of the starter
equivalent to the read length.

The quality of the output is an important aspect of our study, as we were changing
the input given to Velvet software. In the initial work, we allowed extensions with
predefined number of mismatches. When the output of the Velvet was compared
with the original output (reads were directly given to Velvet), the N-50 numbers
were small and the maximum length of the contig was small. When the number of
substitutions allowed was reduced to zero, i.e., no substitutions were allowed, there
was little or no change in the N-50 and maximum contig length.

To get the performance numbers, we introduced counters for counting the number
of clock cycles taken by each starter. As these starters function parallelly in hardware,
the starter with maximum clock cycles was taken for computing the delay and thus
the performance. The clock periodwas obtained from theVHDLmodel. This enabled

http://dx.doi.org/10.1007/978-981-10-0591-6_5
http://dx.doi.org/10.1007/978-981-10-0591-6_5
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us to estimate speedups very early in the DSE. Various experiments were done to
observe the variation of performance with the number of starters used.

In the algorithm, after each iteration of comparing starters with the read set, the
starters that do not get extended are replaced by reads from the remaining read set.
Based on the experimental study, it was found that the compression or the reads that
extend the starters reduces after some iterations. This is because the reads that par-
ticipate in the extension get utilized in the first few rounds. The number of iterations
required to get good speedups varies with the input read set and the number of starters
used. So we decided to stop the process of iterating based on a threshold value. After
each iteration, the number of reads that participate in extension is stored and com-
pared with the value in the previous iteration. We exit the redundancy removal unit
when the difference in these values is less than the threshold.

We also found that compared to the number of reads that pass through the starter
and that do not extend the starter are significantly more than the reads that actually
extend the starters. The process of extension in hardware would involve comparing
the read with the starter at each position. The number of clock cycles spent on trying
for extension would be equivalent to length of the read. There is a lot of time wasted
in doing unnecessary work. To overcome this, we came up with a strategy where
we used “signatures” along with reads. This study is easier with a model closer to
hardware and a System-C model was implemented for this purpose. The hardware
VHDL model was used for getting the actual clock speed and resource usage.

7.2.2 Hardware Implementation

The hardware implementation was done using VHDL as explained in Chap.5. The
hardware model was used for

I Modification to the algorithm to suit the target hardware (FPGA);
II Compute performance numbers;
III Predict the performance numbers for variants of the fabric (non-existing as of

now).

The algorithm was modified to suit the FPGA implementation. The reads are given
to a file-coder implemented in hardware, which does the binary coding of the reads.
The nucleotide in the reads are binary coded using two-bits; ‘A’ as “00,” ‘C’ as “01,”
‘T’ as “10,” and ‘G’ as “11.” This saves communication delays and also the FPGA
resource usage.

A prefilter block is designed to save the time spent on extension for nonextending
reads. The prefilter quickly checks if the read is likely to extend the starter. If the
read passes the prefilter, it is evaluated for extension, else it is sent to the next
processing element containing a different starter. A signature of the read termed as
“read-vector” is stored along with the read. The read vector is a 256-bit vector storing
the information of the 4-mers available in the read. The position in the vector tells
the presence of the particular 4-mer. The particular bit is set if that 4-mer exists in the

http://dx.doi.org/10.1007/978-981-10-0591-6_5
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read. As the read is copied as starters at the beginning of each iteration, the starter
also stores the vector both for the left and the right ends of the starter. We term this
“starter left vector” and the “starter right vector” for the left starter and the right
starter. An example of a read vector is shown in Fig. 7.2. In the prefilter, a logical
“AND” of read vector and starter left vector is computed. The number of matching
4-mers in the starter and the read is found by counting the number of ‘1’s in this
result. If the number of ‘1’s is greater than a threshold, it is passed to the extender.
Similarly, the same operation is performed with the right vector in parallel to save
time. In the extender, the read is shifted and checked if it can be extended. The model
with fixed mismatches will require more hardware as some more comparisons are
needed. As, it was found from the C-model that mismatches caused the quality of
output to deteriorate, we reduce the FPGA resource usage. The construction of the
read vector is a one-time process and so is done along with binary coding of the
reads.

The processing elements are connected in series preceded by the coding unit. As
the processing units take irregular number of clock cycles for their operation, FIFOs
are implemented between the processing elements.

The hardware model was used to get the actual operating frequency and the
resource usage. The critical path of the design was in the 1-counter in the prefilter.
The operating frequency without the HEBs was 98 MHz. For doing a design space
exploration of HEBs, we consider design

I without any HEBs.
II with only FIFOcontroller asHEB (already such FIFOcontrollers exist inmodern

FPGAs).
III with only 1-counter HEBs.
IV with both the FIFO controller as well as 1-counter HEBs.

VEBmethodology was used for building the model with HEBs. The VEBmethodol-
ogy can be used to get the area and the critical path estimates using the HEB design.
In this methodology, the HEB is implemented as an ASIC to get the area and the
time taken from input to output. The HEB block is implemented as a dummy block
in FPGA with delay between the pins equivalent to the HEB. A separate area and
delay model can be used for analysis.

The 1-counterHEBwas built using synopsys design compiler tools and the critical
path and area of the design was obtained [8]. The dummy blocks with equivalent
area and delay was constructed as a Xilinx Relationally Placed Macro (RPM). These
RPMs replace the actual blocks in the FPGAdesign and the critical path and resources
occupied in the FPGA were evaluated. The area benefits provide more number of
processing elements to be embedded into the FPGA and hence more speedup. As
this model would not allow the analysis of speedups with HEBs, it was required to
implement the system in a high-level description. System-Cmodel was used to study
the benefits of the HEBs.
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7.2.3 System-C Implementation

The System-C model was required to get to a model which had more details and
was nearer to hardware implementation. It is easier to model a parallel system using
System-C than a C-implementation. Even though System-C model runs slower than
the C-model, it makes performance analysis more accurate and easier. For analyzing
the speedups for a co-design problem like this which is input data dependent and
resource dependent, a System-C model is beneficial. We also wanted to study the
benefits of embedding an hardware accelerator in the FPGA. As such a system
does not exist, this model provides a mechanism to do performance analysis. The
System-C model is similar to the hardware model as shown in Fig. 7.3. Each of the
processing element is modeled as a “sc_method” as shown in Fig. 7.4. Counters are
added for displaying the clock cycles. The System-C model was basically used for

I Study of the algorithm with the current design.
II Performance numbers with existing system.
III Performance numbers for future fabrics with HEBs.

The System-C model was used for studying the variation of the preprocessor output
with the threshold used in the prefilter. The C-model had an implementation of
hash tables for making it work faster, so it was not very accurate. The measurement
of the clocks and use of the prefilter could be done using the System-C model.
System-C model was used for observing the finer details along with getting more
accurate measurements.

The performance numbers were generated by using cycle accurate model. The
clock cycles obtained from the model were then added with the software time taken
by the Velvet software for constructing the contigs from the intermediate contigs.

Fig. 7.3 Overall system design using System-C



108 7 System-Level Design Space Exploration

Fig. 7.4 Processing element design (system level)

This gave more realistic numbers for the speedups. There was no need to modify
the system-C model for incorporating HEBs as the functionality remains the same
without theHEBandwith theHEB.The delay computation based on clock period and
number of clocks were changed accordingly for estimating the overall performance.

7.3 Multi-FPGA Implementation

Bioinformatics applications deal with very large amount of data and there is consid-
erable data parallelism available in the applications. Most of the times, parallelism
available in the application cannot be exploited due to limited hardware resources.
Modern FPGA-based accelerator cards contain more than one FPGA. Applications
can be ported on these multi-FPGA cards to take advantage of the large number
of resources available in the board. More concurrent execution units can be imple-
mented to achieve higher speedups over software-only implementations. Typically,
linear speedups using multiple FPGAs is not realized due to constraints on the I/O
pins as well as delays due to interconnects. I/O pin constraints implies multiplex-
ing for achieving data transfer. Recently, FPGAs have seen major increase in I/O
pins and this also promotes assessment of multiple FPGA solutions for increasing
performance.
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We developed a System-Cmodel to study application acceleration onmulti-FPGA
boards. We investigate the benefits of using multi-FPGA boards with FPGAs having
custom HEBs in them. Again, FPGAs with HEBs will be able to implement number
of processing elements on a single FPGA while simultaneously executing with a
faster clock as HEBs reduce the critical path. We model the whole system containing
host, interface, and FPGA board with multiple FPGAs using System-C. First, we
map the application onto such fabrics including the required delays to estimate the
overall execution time. The model was also used to study the memory bandwidth
requirements for the application.

Multi-FPGA board application partitioning has been studied by Jing et al. [6].
The authors discuss methods basically aimed at energy efficiency. Many authors
have reported studies onmulti-FPGA interconnectivity topologies [2, 3]. Application
mapping onmulti-FPGA configuration has been studied by Sushil Chandra Jain et al.
[5]. There has been work related to time multiplexing the interconnections between
the FPGAs to achieve performance [4]. Our goal was to estimate the performance of
board with multiple FPGAs that contained specialized blocks embedded in them.We
study acceleration of de novo genome sequencing using such multi-FPGA boards.

7.4 Results and Discussion

The results reported here are based on the three models explained in Sect. 7.2. The
performance numbers were obtained for single-FPGA board as well as multi-FPGA
implementations. The number of FPGAs were varied from 1 to 4. The System-C
model was executed on a system with Intel core I7 processor with 8GB ram, running
Ubuntu 13.04 operating system.

7.4.1 Single-FPGA

The three models were tested for correctness using sample inputs. The VHDLmodel
was validated using a PCIe, alpha-data FPGA board having Virtex-6 FPGA. A com-
parison of various algorithms is shown and the perl scripts to generate reads are
provided by Zhang et al. [11]. Similar to their input, we also generated synthetic
reads. The reads were generated from the swinepox genome sequence. The input to
the perl scripts were, the number of reads, read length and the error percentage. The
coverage of the reads for our experiments was taken to be 100× and the number of
reads was calculated based on the length of the genome for different read lengths.
An error of 0.1% was introduced into the reads.

The results from the three models were obtained and compared with the Velvet
software [9]. For the speedups, the Velvet software time was compared with the pre-
processing time and the postprocessing time using Velvet. Simulation using C-model
is faster compared to other models and hence it is used for analyzing the speedups
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with larger genomes like E. coli. It was also used for refinements in the algorithm
as discussed previously. The C-model is faster due to the hash table implementation
in Mapsembler. Since hardware implementation does not have the hash table imple-
mentation, System-C model was required to study the exact number of cycles saved
by using the prefilter. The VHDL model was needed to get the exact area numbers
and the critical path which decides the operating frequency. The VHDL model was
also used to get the operating frequency and area estimates for the designs with
HEBs.

Using C-model it is observed that the speedup first increases with the number
of rounds and reaches a peak. After attaining this peak it starts to taper down. The
speedup initially increases as the compression of the reads is initially quite high.
During the later rounds, the reads which are left are mainly disjoint reads. The
tapering of the speedups after attaining the peak can be attributed to the fact that
effective work done on compression is reduced and the time is wasted for the read
write time and the time spent in comparing the reads with the starter when there are
very few extensions possible.

The VHDL model was implemented using Xilinx ISE [10]. The Xilinx synthesis
and place and route tools were used to find the operating frequency of the circuit.
It was found that the critical path of the design was in the 1-counter section of the
prefilter. We implemented the 1-counter as an HEB using the VEB methodology.
Synopsys design compiler tool was used for ASIC synthesis of the 1-counter block
[8]. The 1-counter is built using a tree structure where bit wise addition is carried
out at each level.

The operating frequency and the number of processing elements that could be
fitted onto Xilinx Virtex-6 SX475T and Virtex-7 XC7A200T devices is tabulated
in Table7.2. The number of PEs that can fit in the FPGA increases and hence con-
tribute to the speedups.We evaluated an already existingFIFOcontrollerHEBand the
1-counter HEB. Even though the frequency of operation of the design with no HEB
and with FIFO HEB is same the number of processing elements that can be imple-
mented increases due to the benefits from the resource usage, as theHEBs occupy less
area when compared to the area occupied by logic in LUTs. Similarly, the number
of processing elements using both HEBs (FIFO controller and the 1-counter HEBs)
in Xilinx Virtex7-XC7A200T FPGA is 247 when compared to design without HEBs
which is 143.

Table 7.2 Resource usage and operating frequency obtained from VHDL model

Device Feature No HEB FIFO HEB 1-counter
HEB

Both HEBs

Virtex-6 No. of PEs 60 73 80 103

SX475T Op. freq MHz 98 98 185 185

Virtex-7 No. of PEs 143 175 191 247

XC7A200T Op. freq MHz 98 98 185 185
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The variation of threshold with the compression and total time taken for process-
ing when no HEBs are present and when HEBs are present are shown in Fig. 7.5a–c.
This is estimated using the System-C model. The results shown were obtained for
simulation of a single round of preprocessing using reads of Swinepox genome
with read length 32 and 100× coverage and 0.1% error. The compression increases
with further rounds. It is observed that the time taken reduces after a certain thresh-
old value. In Fig. 7.5a, after threshold value of 13 the time taken for preprocessing
reduces. This means that the 4-mer matches in the reads and starter should be at-least
13 for getting better performance both in terms of time and compression. The time
reduces as the cycles used by the prefilter is very small compared to the time spent
in the extender by the reads that do not extend the starter.

The preprocessing time with varying “host to board data transfer bandwidths”
variation is shown in Table7.3. The preprocessing time is taken for swinepox with
read length 32 for a single round. It can be observed that after 5GBps, the preprocess-
ing time saturates to 54.17µs for no prefilter and 14.8µs with prefilter with threshold
11. As the threshold for the prefilter is increased, the preprocessing time reduces as
the time spent in the extender is avoided.

The time taken by the processing element with HEBs present is less as the oper-
ating frequency is more when HEBs are used. The variation of compression with
varying thresholds for the designs without using HEBs and with HEBs is shown
in Fig. 7.5c. The compression increases when HEBs are used because the number
of processing elements that can be implemented on the device increases. As the
processing elements increase, the read which can extend a particular starter need not
wait for next iterations for finding its corresponding starter for extending. So, the
work done per iteration on compression increases. The results shape the architecture
and an optimal design can be implemented with such an exploration.

7.4.2 Multi FPGA

The various multi-FPGA topologies were studied using the System-C models are
shown in Fig. 7.6. The 1-FPGA board has a PCIe interface to transfer data from
the host to the board. In the 2-FPGA board, the PCIe interface connects the two
FPGAs. The FPGAs are connected to each other using 300 I/O pins directly. The
FPGAs are connected through 150 pins in the 3-FPGA and 4-FPGA boards. The
inter-FPGA delay is assumed to be two cycles. We also evaluate performance for
a 4-FPGA board which has two FPGAs clustered and connected to another cluster
of two FPGAs through PCIe interface as shown in Fig. 7.6. In such an architecture,
the PCIe bandwidth is shared equally between the host connectivity and for the
inter-FPGA connectivity.



112 7 System-Level Design Space Exploration

Fig. 7.5 Compression of
reads. a Compression and
time with varying threshold
for single round without
HEBs. b Compression and
time with varying threshold
for single round with HEBs.
c Compression with varying
threshold

(a)

(c)

(b)
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Table 7.3 Variation of preprocessing time with host to board data transfer bandwidth

Host-board bandwidth in GBps Preproc. time in µs for
threshold 0

Preproc. time in µs for
threshold 11

1 89.301 49.779

2 66.874 27.352

3 59.4 19.877

4 55.66 16.137

5 54.117 14.822

6 54.17 14.822

(a)
(d)

(e)

(b)

(c)

Fig. 7.6 Multi-FPGA topologies

The Velvet software is accelerated using the approach discussed in the previous
chapters. The preprocessing is mapped to the FPGA. In the multi-FPGA design, we
consider a system where the host supplies the reads to the FPGA board through PCIe
interface. The PEs are implemented in the FPGAs. FIFOs are introduced in between
the PEs. The PEs in two FPGAs are connected through FIFOs as shown in Fig. 7.7.
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Fig. 7.7 Connectivity
between PEs in multi-FPGA
board

If ‘N’ PEs can fit in a FPGA, the data reaches to (N + 1)th PE through two FIFOs.
The loss of data due to interconnect delays between the pins of different FPGAs is
avoided by using the FIFOs. We assume that clocks of the FPGAs on a single board
are synchronized.

The compression after various rounds for FPGAs without HEB vis-a-vis with
HEBs is shown in Fig. 7.8a. The compression is an important factor which decides
the overall speedups as compression increases, the overall speedup increases as the
data to be processed byVelvet software decreases. The overall speedups for assembly
of swinepox genome with 0.1% error is 9× obtained using no HEBs and 12× using
both FIFO controller HEBs and 1-counter HEBs. The compression in the reads and
the FPGA preprocessing time for different FPGA boards is shown in Fig. 7.8b, c
respectively. It is interesting to note that the time taken for preprocessing by 1-FPGA
board is less than 2-FPGA board in the beginning rounds even though number of
FPGAs in 2-FPGA board is greater. This is due to the interconnect delays introduced
between the FPGAs in the same board. This does not affect the overall speedup as
the compression from the 2-FPGA board is more than the 1-FPGA board. But, as the
number of FPGAs increase, the rate of compression per round increases and hence
the overall speedup increases as more PEs can be implemented in hardware.

The connectivity between the FPGAs in a single board is also important. It can be
seen from Fig. 7.9 that the direct connectivity between FPGAs reduces the execution
time. In the board with PCIe connectivity and 2-FPGA clusters, the bandwidth gets
shared for the host communication and inter-cluster connectivity. For the genome
assembly, a multi-FPGA board with FPGAs connected directly through pins is more
favorable. Even though such systems provide more speedups, scalability beyond
certain number of FPGAs would be an issue due to PCB design constraints.

7.5 Summary

Themethodology described inChap.3was used to accelerate de novo genome assem-
bly. Simulation models at various levels of abstraction were used for design space
exploration. Based on the simulation time, we have studied the various parameters
that could be explored at different levels of abstraction. Iterative refinement of the
algorithm driven by the architecture of FPGAs including HEBs has been presented.
In future, as new technologies develop and reduce the transistor size, it is expected

http://dx.doi.org/10.1007/978-981-10-0591-6_3
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Fig. 7.8 Compression and
preprocessing time with
muti-FPGA board. a The
compression comparison
with HEBs and without
HEBs for 4-FPGA board. b
The compression on
different FPGA boards. c
The preprocessing time on
different FPGA boards with
both HEBs

(a)

(b)

(c)
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Fig. 7.9 The FPGA
preprocessing time for
4-FPGA boards with
different connectivity with
both HEBs

that the number of HEBs that can be implemented on a single high-end FPGA itself
would increase. An evaluation framework such as one presented here with high-level
design tools will be useful for an optimal design within the given constraints.
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Chapter 8
Future Directions

Newhigh-performance applications demandhigh compute power. These applications
have always driven hardware designers to come up with new hardware architectures
to execute them efficiently. On the other hand, today’s connected world with complex
but standard interfaces require extensive software components to be an integral part
of any solution. Thus, we are moving toward an era where software and hardware
would have to coexist. High performance could be achieved by hardware acceler-
ators augmenting processors. FPGAs as reconfigurable hardware would be able to
provide flexible platforms. Design of efficient hardware accelerators becomes essen-
tial for meeting the application demands. The recent trends clearly show that huge
performance gains can be obtained using FPGAs only by implementing some core
functionality as HEBs.

On one hand, speedups can be obtained by mapping computation flow to custom
hardware. On the other hand, speedups can also be obtained by changing the appli-
cation to better suit the computing environment where it is run. In future, usage of
custom accelerators to reduce execution time will be common. These custom accel-
erators should have the right balance between soft (flexibility/programmability) and
the hard (custom HEBs) in order to perform better than the existing systems while
keeping the traditional flexibility associated with FPGAs.

In this book, we showed a methodology for evaluating benefits of accelerators
using FPGAs with HEBs. The methodology allows modifications to be done to
the application as well as to the FPGA fabric with a view to evaluate the overall
application performance on the system. We used the methodology for accelerating
two important bioinformatics applications; protein docking, and de novo genome
assembly. The applications were modified to suit the accelerator architecture. The
methodology was also used for designing HEBs specific to the application; the but-
terfly HEB for FTDock application and the 1-counter HEB for de novo genome
assembly. The performance estimates were predicted for these fabrics containing the
respective accelerator HEBs. Analytical models and high-level simulation models
were used to carry out the DSE.

© Springer Science+Business Media Singapore 2016
B.S.C. Varma et al., Architecture Exploration of FPGA Based Accelerators
for BioInformatics Applications, Springer Series in Advanced
Microelectronics 55, DOI 10.1007/978-981-10-0591-6_8
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The FTDock application was profiled and the most time-consuming part was
found to be three-dimensional Fast Fourier Transform (3D-FFT). The algorithm to
carry out 3D-FFT was implemented in hardware. Following our methodology, we
modified the FTDock application to suit the FPGA architecture. The software version
was using double-precision floating point data types. For FPGA implementations,
double-precision floating point computations take up large amount of resources and
hence we studied the impact of changing the data types to single precision. Results
showed very minimal degradation in the output, when single-precision floating point
arithmetic was used. We implemented multiple hardware units to carry out FFT
computations on FPGA. We show speedups of up to 12× can be achieved using
FPGA-based accelerators. We also used our methodology to come up with a custom
HEB to achieve more speedups. We showed speedups of upto 17× over FTDock
application can be achieved using FPGAs incorporating ‘butterfly’ HEBs.

Velvet which is a de novo genome assembly software implementationwas profiled
and found that direct hardware implementation of the software may not possible in
FPGAs due the resource constraints. We proposed a method to reduce the input size
given toVelvet to achieve speedups,without degrading the output. This preprocessing
of reads was done on hardware and the output was given to Velvet to achieve overall
reduction in execution time. A streaming based hardware implementation was done,
which is suitable to FPGAs. Pre-filters were designed to further reduce the overall
execution time. The application for accelerating Velvet was designed using “256-bit
1-counter” HEB and the operating frequency of the FPGA implementation increased
from 98 to 185MHz. High-level models were used to do the algorithm to architecture
mapping. The major limiting factor for speedup is Velvet software execution time
used for construction of contigs from the intermediate contigs generated by FPGAs.
Since, Velvet uses de Bruijn graphs which have very high memory requirement, they
could not be implemented in FPGAs. Higher speedups may be possible, if de Bruijn
graphs can be constructed in FPGAs. This may be possible by developing new FPGA
architectures with significantly larger internal memory or by developing blocks in
FPGA having very tight integration with external memory.

Our proposed methodology was used for the selection of blocks to be embed-
ded into the fabric and for evaluating the performance gain that can be achieved
by such an embedding. Using our methodology, we showed acceleration of bioin-
formatics applications using reconfigurable fabrics with accelerator HEBs. As, our
methodology considers application details, an in-depth analysis of the application
will have to be done to accelerate it. We have considered both application charac-
teristics and accelerator architecture in tandem for achieving speedups for the two
applications considered. Since both applications and architectures keep evolving, our
methodology can be easily adopted to accelerate other applications by developing
new accelerator architectures.

Even though theDesign SpaceExploration presented in this book is FPGAcentric,
it can be extended to design heterogeneous accelerators. It can be easily predicted
that future chips will contain blocks of varying granularity. The Design Space Explo-
ration presented in this book can be extended to such accelerators where there is a
mix of blocks with varying granularity. The coarse-grained units may also execute
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instructions and can also be a part of the exploration. Such units in accelerators will
add one more dimension to the Design Space Exploration, which would be based on
a retargetable compiler for such fabrics. A systematic exploration methodology such
as ours can be extended to design future chips, which will allow the use of silicon
area efficiently by providing programmability without compromising much on the
performance.
The major directions in which this work can be extended is as follows:

1. Automating Design of Custom Accelerators
We have studied and shown that reconfigurable fabrics augmented with hard
embedded blocks provide performance benefits. The methodology can be
extended for automatic generation of the hard embedded blocks in FPGAs. The
process of automatic generation of these blocks has many challenges. The first
challenge is to come up with profiling tools to asses the software applications
from a particular domain. Present profiling tools generate data for a architecture
on which the tool is installed. The tool which takes architecture description as
an input and gives the profile information for that specific architecture would be
beneficial. Work that has been done for extending the instruction set with custom
instructions in ASIP space could be useful as a starting point.
Coupled with this, automated generation of inputs for high-level synthesis tools
enable generation of good, configurable coarse-grained blocks to be embedded
in the FPGA. There are challenges at the low-level hardware design which has
to be studied. Tools have to be developed for placement of these hard embedded
blocks and more importantly a suitable interconnect architecture. These have to
be done in conjunction with the design of distributed memory architecture of the
fabric. These coarse-grained hard embedded blocks reduce the flexibility offered
by the reconfigurable fabric. There has been little work in defining the flexibility
parameter in the context of tradeoffs involved with the hard embedded blocks.
This metric would enable systematic exploration of the fabric design space.

2. Heterogeneous Reconfigurable Systems
There is a need to develop new systems with heterogeneous cores to process
and analyze big data. Such systems should be architected to allow scalability
and be able to cater to the requirements of various applications. Reconfigurable
accelerators provide flexibility that is critical for evolving applications. Designing
effective models for performance estimation for such systems is a challenge. The
problem is complex as both software application and the hardware parameters can
be varied simultaneously. This work can be used for architecting these systems
and developing new ways to carry out such a design space exploration. The tasks
involved in this process will be to develop simulators and high-level models
for doing the performance estimates. Once the architecture is decided, building
the actual platform and doing an efficient hardware implementation would be a
challenge. The energy and power consumption of such devices will have to be
studied and modifications to the systems have to be done. Tradeoffs based on
different metrics will also have to be evaluated.
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GPGPUs have now been established as very effective platforms for applications
with significant SIMD kernels. Partitioning and mapping applications on archi-
tectures with CPU cores, GPUs as well as reconfigurable logic is becoming a
reality. Effective performance enhancements with a power budget would require
use of HEBs as a part of reconfigurable logic and thus the need for exploration
of such heterogeneous design space.
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